1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nasty-shy [4]
2 years ago
6

Find the coordinate plane that represents the solution of this system y > -x - 1 y + 4 ≤ x

Mathematics
1 answer:
gulaghasi [49]2 years ago
8 0

Answer:

The graph will open to the right and will be mostly in quadrant 1

Step-by-step explanation:

You might be interested in
I need help please.
inn [45]
➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
6.008 can be written as =

▪️6008 / 100
▪️6008 / 100
= 3004 / 50
= 1502 / 25
= 1502 / 25 in mixed fraction .
➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
That’s it...
7 0
3 years ago
Which is the correct way to evaluate the expression 48−(29−17)?
Blababa [14]

Answer:

37

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
If a and b are positive numbers, find the maximum value of f(x) = x^a(2 − x)^b on the interval 0 ≤ x ≤ 2.
Ad libitum [116K]

Answer:

The maximum value of f(x) occurs at:

\displaystyle x = \frac{2a}{a+b}

And is given by:

\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b

Step-by-step explanation:

Answer:

Step-by-step explanation:

We are given the function:

\displaystyle f(x) = x^a (2-x)^b \text{ where } a, b >0

And we want to find the maximum value of f(x) on the interval [0, 2].

First, let's evaluate the endpoints of the interval:

\displaystyle f(0) = (0)^a(2-(0))^b = 0

And:

\displaystyle f(2) = (2)^a(2-(2))^b = 0

Recall that extrema occurs at a function's critical points. The critical points of a function at the points where its derivative is either zero or undefined. Thus, find the derivative of the function:

\displaystyle f'(x) = \frac{d}{dx} \left[ x^a\left(2-x\right)^b\right]

By the Product Rule:

\displaystyle \begin{aligned} f'(x) &= \frac{d}{dx}\left[x^a\right] (2-x)^b + x^a\frac{d}{dx}\left[(2-x)^b\right]\\ \\ &=\left(ax^{a-1}\right)\left(2-x\right)^b + x^a\left(b(2-x)^{b-1}\cdot -1\right) \\ \\ &= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right] \end{aligned}

Set the derivative equal to zero and solve for <em>x: </em>

\displaystyle 0= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right]

By the Zero Product Property:

\displaystyle x^a (2-x)^b = 0\text{ or } \frac{a}{x} - \frac{b}{2-x} = 0

The solutions to the first equation are <em>x</em> = 0 and <em>x</em> = 2.

First, for the second equation, note that it is undefined when <em>x</em> = 0 and <em>x</em> = 2.

To solve for <em>x</em>, we can multiply both sides by the denominators.

\displaystyle\left( \frac{a}{x} - \frac{b}{2-x} \right)\left((x(2-x)\right) = 0(x(2-x))

Simplify:

\displaystyle a(2-x) - b(x) = 0

And solve for <em>x: </em>

\displaystyle \begin{aligned} 2a-ax-bx &= 0 \\ 2a &= ax+bx \\ 2a&= x(a+b) \\  \frac{2a}{a+b} &= x  \end{aligned}

So, our critical points are:

\displaystyle x = 0 , 2 , \text{ and } \frac{2a}{a+b}

We already know that f(0) = f(2) = 0.

For the third point, we can see that:

\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(2- \frac{2a}{a+b}\right)^b

This can be simplified to:

\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b

Since <em>a</em> and <em>b</em> > 0, both factors must be positive. Thus, f(2a / (a + b)) > 0. So, this must be the maximum value.

To confirm that this is indeed a maximum, we can select values to test. Let <em>a</em> = 2 and <em>b</em> = 3. Then:

\displaystyle f'(x) = x^2(2-x)^3\left(\frac{2}{x} - \frac{3}{2-x}\right)

The critical point will be at:

\displaystyle x= \frac{2(2)}{(2)+(3)} = \frac{4}{5}=0.8

Testing <em>x</em> = 0.5 and <em>x</em> = 1 yields that:

\displaystyle f'(0.5) >0\text{ and } f'(1)

Since the derivative is positive and then negative, we can conclude that the point is indeed a maximum.

Therefore, the maximum value of f(x) occurs at:

\displaystyle x = \frac{2a}{a+b}

And is given by:

\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b

5 0
3 years ago
Hong drove 648 miles in 9 hours.
ioda

Answer:

864 miles

Step-by-step explanation:

648/9 = 72 mph

72 x 12 = 864

6 0
3 years ago
Read 2 more answers
Adam is climbing up the stairs in a building. At a certain point, Adam starts counting the steps and when he reaches the last st
Ksivusya [100]

Answer:

He climed 3 steps before he started counting the steps.

Step-by-step explanation:

pls mark me as a branliest

5 0
3 years ago
Read 2 more answers
Other questions:
  • 40% of the people attending the movie were adults if 20 adults attended the movie then how many people attended the movie (use a
    15·1 answer
  • Mia needs to separate 270 blue pens and 180 red pens into packs. Each pack will have the same number of blue pens and the same n
    15·2 answers
  • Are two regular hexagons always congruent?
    11·1 answer
  • How can the order of operations be used to simplify expressions?
    6·1 answer
  • tony goes to the funfair and has one go on the hoopla ad one go on the darts. the probability that he wins at hoopla is 0.3 the
    9·1 answer
  • IS 0.1369 per ounce how many is this cost to the nearest cent
    13·1 answer
  • Figure A is translated 3 units right and 2 units up. The translated figure is labeled figure B. Figure B is reflected over the x
    7·1 answer
  • An artist is designing a kite like the one show below. Calculate the area to determine how much material she will need to create
    13·1 answer
  • What is the meaning of dork
    13·2 answers
  • 4. Which of the following can be used
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!