Answer:
Step-by-step explanation:
3021
The <em><u>correct answer</u></em> is:
D) Closed circle on 8, shading to the right.
Explanation:
First we must solve the inequality:
x - 3 ≥ 5
Add 3 to each side:
x - 3 + 3 ≥ 5 + 3
x ≥ 8
To graph this, we want a circle on 8 Since it is "greater than or equal to," 8 is included in the solution set. This means the circle will be closed.
Since it is "greater than," we want the numbers to the right of 8 on the number line.
This means the inequality will be a closed circle and shaded to the right.
N(3)-8=16
add 8 to both sides
3n=24
Divide each side by three
n=8
To solve this we are going to use the future value of annuity due formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic deposit

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of deposits per year
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

. Since Ruben makes the deposits every 6 months,

. The interest is compounded semiannually, so 2 times per year; therefore,

.
Lets replace the values in our formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=(1+ \frac{0.1}{2} )*420[ \frac{(1+ \frac{0.1}{2})^{(2)(15)}-1 }{ \frac{01}{2} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%20%29%2A420%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%29%5E%7B%282%29%2815%29%7D-1%20%7D%7B%20%5Cfrac%7B01%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$29,299.53</span>
Step-by-step explanation:
We can prove the statement is false by proof of contradiction:
We know that cos0° = 1 and cos90° = 0.
Let A = 0° and B = 90°.
Left-Hand Side:
cos(A + B) = cos(0° + 90°) = cos90° = 0.
Right-Hand Side:
cos(A) + cos(B) = cos(0°) + cos(90°)
= 1 + 0 = 1.
Since LHS =/= RHS, by proof of contradiction,
the statement is false.