Answer:
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

The proportion of infants with birth weights between 125 oz and 140 oz is
This is the pvalue of Z when X = 140 subtracted by the pvalue of Z when X = 125. So
X = 140



has a pvalue of 0.9772
X = 125



has a pvalue of 0.8413
0.9772 - 0.8413 = 0.1359
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.
Answer:
We conclude that the area of the right triangle is:

Hence, option A is correct.
Step-by-step explanation:
From the given right-angled triangle,
Using the formula to determine the area of the right-angled triangle
Area of the right triangle A = 1/2 × Base × Perpendicular

Factor 2p-6: 2(p-3)
Divide the number: 2/2 = 1





Therefore, we conclude that the area of the right triangle is:

Hence, option A is correct.
Answer:
136000 cm
Step-by-step explanation:
I think it's helps you
Answer:
8 = r
Step-by-step explanation:
69 = 9r -3
Add 3 to each side
69+3 = 9r -3+3
72 = 9r
Divide each side by 9
72 / 9 = 9r/9
8 = r