Given:
AB is the diameter of a circle.
m∠CAB = 26°
To find:
The measure of m∠CBA.
Solution:
Angle formed in the diameter of a circle is always 90°.
⇒ m∠ACB = 90°
In triangle ACB,
Sum of the angles in the triangle = 180°
m∠CAB + m∠ACB + m∠CBA = 180°
26° + 90° + m∠CBA = 180°
116° + m∠CBA = 180°
Subtract 116° from both sides.
116° + m∠CBA - 116° = 180° - 116°
m∠CBA = 64°
The measure of m∠CBA is 64°.
Answer:
$245,000
Step-by-step explanation:
Let the intial cost = x




Brooke is 8 years old! This is what I did⬇️
5x2=10. (In 5 yrs 10 will add to the sum of their age.
29-10=19. (The sum of their ages right now is 19)
11 + 8 = 19 ( 11 is 3 more than 8 and it equals their ages together)
Brooke:8
Samantha:11
Given:
Point F,G,H are midpoints of the sides of the triangle CDE.

To find:
The perimeter of the triangle CDE.
Solution:
According to the triangle mid-segment theorem, the length of the mid-segment of a triangle is always half of the base of the triangle.
FG is mid-segment and DE is base. So, by using triangle mid-segment theorem, we get




GH is mid-segment and CE is base. So, by using triangle mid-segment theorem, we get




Now, the perimeter of the triangle CDE is:



Therefore, the perimeter of the triangle CDE is 56 units.