1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ZanzabumX [31]
1 year ago
6

Simplify the expression 5^3 x 5^-5 A. 5^2 B. 1/5 C. 1/5^2 D. -52

Mathematics
1 answer:
jeka941 year ago
5 0

{5}^{3}  \:  \times  \:  {5}^{ - 5}

  • We first compute the product.

{5}^{ - 2}

  • We can transform the product into positive if we use this formula:

\boxed{ {a}^{ - n}  \:  =  \:  \frac{1}{ {a}^{n} } }

<h3>We apply it:</h3>

{5}^{ - 2}  \:  =  \:   \boxed{ \bold{\frac{1}{ {5}^{2} } }}

<h2>Answer: </h2>

\text{Option C.} \:  \boxed{  \bold{\frac{1}{ {5}^{2} } }}

<h3><em><u>MissSpanish</u></em></h3>
You might be interested in
Look at the picture and answer the question
statuscvo [17]
The mean is 1.4
The median is 4
The mode is 3
8 0
3 years ago
Can I get help please?
irina1246 [14]

Answer:

Round to a number that is not a decimal.

4 0
3 years ago
Write (8a-^3) -2/3 in simplest form
Anna71 [15]

(8a^{-3})^{\frac{-2}{3}} = \frac{a^2}{4}

<em><u>Solution:</u></em>

<em><u>Given that,</u></em>

(8a^{-3})^{\frac{-2}{3}

We have to write in simplest form

<em><u>Use the following law of exponent</u></em>

(a^m)^n = a^{mn}

Using this, simplify the given expression

(8a^{-3})^{\frac{-2}{3}} = 8^{\frac{-2}{3}} \times a^{ -3 \times \frac{-2}{3}}\\\\Simplifying\ we\ get\\\\(8a^{-3})^{\frac{-2}{3}} = 8^{\frac{-2}{3}} \times a^2\\\\We\ know\ that\ 8 = 2^3\\\\Therefore\\\\(8a^{-3})^{\frac{-2}{3}} =2^3^{\frac{-2}{3}} \times a^2\\\\(8a^{-3})^{\frac{-2}{3}} =2^{-2} \times a^2\\\\(8a^{-3})^{\frac{-2}{3}} = \frac{a^2}{4}

Thus the given expression is simplified

8 0
3 years ago
Solve -5x2 - 20x + 35 = 30 by completing the square.
Semenov [28]

Answer:

x=−2−√5 or x=−2+√5

Step-by-step explanation:

-5x2 - 20x + 35 = 30

Answer = x=−2−√5 or x=−2+√5

5 0
2 years ago
1. Derive the half-angle formulas from the double
lilavasa [31]

1) cos (θ / 2) = √[(1 + cos θ) / 2], sin (θ / 2) = √[(1 - cos θ) / 2], tan (θ / 2) = √[(1 - cos θ) / (1 + cos θ)]

2) (x, y) → (r · cos θ, r · sin θ), where r = √(x² + y²).

3) The point (x, y) = (2, 3) is equivalent to the point (r, θ) = (√13, 56.309°). The point (r, θ) = (4, 30°) is equivalent to the point (x, y) = (2√3, 2).

4) The <em>linear</em> function y = 5 · x - 8 is equivalent to the function r = - 8 / (sin θ - 5 · cos θ).

<h3>How to apply trigonometry on deriving formulas and transforming points</h3>

1) The following <em>trigonometric</em> formulae are used to derive the <em>half-angle</em> formulas:

sin² θ / 2 + cos² θ / 2 = 1                      (1)

cos θ = cos² (θ / 2) - sin² (θ / 2)           (2)

First, we derive the formula for the sine of a <em>half</em> angle:

cos θ = 2 · cos² (θ / 2) - 1

cos² (θ / 2) = (1 + cos θ) / 2

cos (θ / 2) = √[(1 + cos θ) / 2]

Second, we derive the formula for the cosine of a <em>half</em> angle:

cos θ = 1 - 2 · sin² (θ / 2)

2 · sin² (θ / 2) = 1 - cos θ

sin² (θ / 2) = (1 - cos θ) / 2

sin (θ / 2) = √[(1 - cos θ) / 2]

Third, we derive the formula for the tangent of a <em>half</em> angle:

tan (θ / 2) = sin (θ / 2) / cos (θ / 2)

tan (θ / 2) = √[(1 - cos θ) / (1 + cos θ)]

2) The formulae for the conversion of coordinates in <em>rectangular</em> form to <em>polar</em> form are obtained by <em>trigonometric</em> functions:

(x, y) → (r · cos θ, r · sin θ), where r = √(x² + y²).

3) Let be the point (x, y) = (2, 3), the coordinates in <em>polar</em> form are:

r = √(2² + 3²)

r = √13

θ = atan(3 / 2)

θ ≈ 56.309°

The point (x, y) = (2, 3) is equivalent to the point (r, θ) = (√13, 56.309°).

Let be the point (r, θ) = (4, 30°), the coordinates in <em>rectangular</em> form are:

(x, y) = (4 · cos 30°, 4 · sin 30°)

(x, y) = (2√3, 2)

The point (r, θ) = (4, 30°) is equivalent to the point (x, y) = (2√3, 2).

4) Let be the <em>linear</em> function y = 5 · x - 8, we proceed to use the following <em>substitution</em> formulas: x = r · cos θ, y = r · sin θ

r · sin θ = 5 · r · cos θ - 8

r · sin θ - 5 · r · cos θ = - 8

r · (sin θ - 5 · cos θ) = - 8

r = - 8 / (sin θ - 5 · cos θ)

The <em>linear</em> function y = 5 · x - 8 is equivalent to the function r = - 8 / (sin θ - 5 · cos θ).

To learn more on trigonometric expressions: brainly.com/question/14746686

#SPJ1

4 0
2 years ago
Other questions:
  • Starting value 16 increases by 50% with each teem
    10·1 answer
  • -2x+5y=-15 5x+2y=-6 what is the solution
    14·1 answer
  • What is (5.2 × 10^2) × (1.2 × 10^4)?    A. 6.4 × 10^8   B. 6.24 × 10^8   C. 6.4 × 10^6   D. 6.24 × 10^6
    10·2 answers
  • Which symbol correctly compares the two fractions?
    12·1 answer
  • Giving brainliest seems like an easy question.
    7·1 answer
  • What is the equation for the line of reflection?
    5·1 answer
  • 3x2 + 14x − 20 = (x + B)(3x − 4) What is B=
    6·1 answer
  • Divide x² +x +1 by x+ 1 by long division method​
    7·2 answers
  • The experimental probability that a person in the unites states has a+ blood type is 35.7%. the experimental probability that a
    12·2 answers
  • 38 kg of onions cost $144.40. how much would 49 kg cost?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!