Answer:
Joshua has 2a^2 -6a + 7 more than Maranda.
Step-by-step explanation:
Joshua has 6a^2 -5a + 10 dollars and Maranda has 4a^2 + a + 3 to find out how much more money Joshua has we need to subtract the amount he has by the amount of Maranda's account. Since both expressions are pollynomial we'll have to subtract the numbers wich are multiplying the same power, so we do as follow:
6a^2 - 5a + 10 - (4a^2 + a + 3)
6a^2 - 5a + 10 - 4a^2 -a -3
6a^2 - 4a^2 -5a -a + 10 -3
2a^2 -6a + 7
Joshua has 2a^2 -6a + 7 more than Maranda.
Answer:
can u zoom in and take picture
Step-by-step explanation:
Answer:
Step-by-step explanation:
For the null hypothesis,
µ = 60
For the alternative hypothesis,
h1: µ < 60
This is a left tailed test
Since the population standard deviation is not given, the distribution is a student's t.
Since n = 100,
Degrees of freedom, df = n - 1 = 100 - 1 = 99
t = (x - µ)/(s/√n)
Where
x = sample mean = 52
µ = population mean = 60
s = samples standard deviation = 22
t = (52 - 60)/(22/√100) = - 3.64
We would determine the p value using the t test calculator. It becomes
p = 0.00023
We would reject the null hypothesis if α = 0.05 > 0.00023
Standard form of a circle" (x-h)²+(y-k)²=r², (h,k) being the center, r being the radius.
in this case, h=-2, k=6, (x+2)²+(y-6)²=r²
use the point (-2,10) to find r: (-2+2)²+(10-6)²=r², r=4
so the equation of the circle is: (x+2)²+(y-6)²=4²
Answer:
Step-by-step explanation:
If you want to determine the domain and range of this analytically, you first need to factor the numerator and denominator to see if there is a common factor that can be reduced away. If there is, this affects the domain. The domain are the values in the denominator that the function covers as far as the x-values go. If we factor both the numerator and denominator, we get this:

Since there is a common factor in the numerator and the denominator, (x + 3), we can reduce those away. That type of discontinuity is called a removeable discontinuity and creates a hole in the graph at that value of x. The other factor, (x - 4), does not cancel out. This is called a vertical asymptote and affects the domain of the function. Since the denominator of a rational function (or any fraction, for that matter!) can't EVER equal 0, we see that the denominator of this function goes to 0 where x = 4. That means that the function has to split at that x-value. It comes in from the left, from negative infinity and goes down to negative infinity at x = 4. Then the graph picks up again to the right of x = 4 and comes from positive infinity and goes to positive infinity. The domain is:
(-∞, 4) U (4, ∞)
The range is (-∞, ∞)
If you're having trouble following the wording, refer to the graph of the function on your calculator and it should become apparent.