When it comes to population evolution and genetics, we cannot fail to cite the Hardy-Weinberg principle which emphasizes that if evolutionary factors such as natural selection, mutation, migration and genetic oscillation do not act on a particular population, the frequencies genotypic proportions will remain constant.
The five requirements for a population to be in Hardy-Weinberg equilibrium are:
- Large-scale breeding population: For a population to be in Hardy-Weinberg equilibrium, it is important that this population is large, as small populations favor genetic drift (unanticipated fluctuations in allele frequencies from one generation to another).
- Random mating: In order for the Hardy-Weinberg equilibrium to occur, it is necessary that the mating occur at random, with no preference for certain groups within the population. In this case, we say that the population is in panmixia, that is, they all mate at random.
- No mutations: Mutations alter the total alleles present in a population (gene pool). Therefore, in a Hardy-Weinberg equilibrium population, no mutations should occur.
- No gene flow: When there is gene flow due to migration or immigration of individuals, some genes may be included or excluded from the population. Thus, in an equilibrium situation, no gene flow occurs.
- Lack of natural selection: For a population to be in Hardy-Weinberg equilibrium, natural selection must not be acting on it. If natural selection acts, some genotypes will be selected, modifying the allelic frequencies of the population.
Answer:
The simplest virions consist of two basic components: nucleic acid (single- or double-stranded RNA or DNA) and a protein coat, the capsid, which functions as a shell to protect the viral genome from nucleases and which during infection attaches the virion to specific receptors exposed on the prospective host cell.
Answer:
it increases the viewing size.
Explanation:
Function of microscope is used to enlarge organisms for better look
Answer:
Names are universal
Explanation:
Current naming system that is followed all over the world is called binomial nomenclature. There are many significant and useful features of this classification system however one of the most important feature is the universality of the name.
The scientific names of organism are usually Latin derived and composed of two parts among which first is genus name and second is specie name.
For example<u>: Rosa indica</u> is the scientific name of Rose and it is same all over the world. Unlike common names we dont have to search for name to make others understand which flower we are talking about because if we know scientific name anyone can understand it.
Hope it help!