Answer:
letter C. velocity hope this helps
Answer:
The strength of the magnetic field is
.
Explanation:
Given that,
Length of the rod, L = 1.01 m
Speed with which the rod is moving, v = 3.47 m/s
We need to find the strength of the magnetic field that is perpendicular to both the rod and your direction of motion and that induces an EMF of 0.265 mV across the rod. When the rod is moving with some speed, an emf gets induced and it is given by :

B is magnetic field

So, the strength of the magnetic field is
.
Answer:
Explanation:
Height attained by body = 50 cm
= .5 m
Initial velocity = u
v² = u² - 2gh
0 = u² - 2gh
u² = 2 x 9.8 x .5
u = 3.13 m /s
During the initial period , the muscle stretches by around 10 cm during which force by ground reacts on the body and gives acceleration to achieve velocity of 3.13 m/s from zero .
v² = u² + 2as
3.13² = 0 + 2 a x .10
a = 49 m/s²
reaction by ground R
Net force
R-mg = ma
R= m ( g +a )
= mg + ma
=W + (W/g) x a
W ( 1 + a / g )
= W ( 1 + 49 / 9.8 )
= 6W
Answer:
I think it is 5.6. This is my answer
Answer:
d. none of these
Explanation:
From the given information:
Let assume that Percival catches Sir Rodney's horse in time "t" after covering a certain distance "s"
Then, using the second equation of motion:

FOR Percival, we have:

FOR Sir Rodney;


Equating both equations together; we have:
0.3t² = 3t
0.3t² - 3t = 0
0.3t(t - 10) = 0
If Percival's position at rest = 0
Then; t = 10 s.