Answer:
d.5/6
Step-by-step explanation:
2/3÷4/5
2/3×5/4
5/6
The roots of an equation are simply the x-intercepts of the equation.
See below for the proof that
has at least two real roots
The equation is given as: 
There are several ways to show that an equation has real roots, one of these ways is by using graphs.
See attachment for the graph of 
Next, we count the x-intercepts of the graph (i.e. the points where the equation crosses the x-axis)
From the attached graph, we can see that
crosses the x-axis at approximately <em>-2000 and 2000 </em>between the domain -2500 and 2500
This means that
has at least two real roots
Read more about roots of an equation at:
brainly.com/question/12912962
The set {(1, 2), (2, -3), (3, 4), (4, -5)} represents y as a function of x
Question 2:
The best statement describes the relation is "The relation represents y as a function of x, because each value of x is associated with a single value of y" ⇒ 3rd answer
Question 4:
There are missing options so we can not find the correct answer
Question 5:
The sets {(1 , 1), (2 , 2), (2 , 3)} and {(1, 2), (1, 3), (1, 1)} do not represent y as a function of x ⇒ 1st and 4th answers
Step-by-step explanation:
The relation is a function if each value of x has ONLY one value of y
Ex: The set {(3 , 5) , (-2 , 1) , (4 , 3)} represents y as a function of x because x = 3 has only y = 5, x = -2 has only y = 1, x = 4 has only y = 3
The set {(4 , 5) , (-2 , 1) , (4 , 3)} does not represent y as a function of x because x = 4 has two values of y 5 and 3
Answer:
c
Step-by-step explanation:
c