A segment is bounded by two endpoints.
The two segments can have up to two common points
Assume the line segments are AB and CD where the length of AB is greater than the length of CD.
<u>The possibilities are:</u>
- <em>A point of segment CD lies on segment AB</em>
- <em>Both points of segment CD lie on segment AB.</em>
<em />
See attachment for both possibilities.
Hence, it is possible for the two segments to have two common points.
Read more about line segments at:
brainly.com/question/18983323
First ones 40 and I’m not sure bout the second one but through process of elimination either always or never cause nothing in math is uncertain or non existent
The following statements <span>demonstrates why the following is a non-example of a polynomial.</span>
1. The expression has a variable raised to a negative exponent.
2. The expression has a variable in the denominator of a fraction.
3. The expression has a variable raised to a fraction.
To solve this we are going to use the future value of annuity due formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic deposit

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of deposits per year
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

. Since Ruben makes the deposits every 6 months,

. The interest is compounded semiannually, so 2 times per year; therefore,

.
Lets replace the values in our formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=(1+ \frac{0.1}{2} )*420[ \frac{(1+ \frac{0.1}{2})^{(2)(15)}-1 }{ \frac{01}{2} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%20%29%2A420%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%29%5E%7B%282%29%2815%29%7D-1%20%7D%7B%20%5Cfrac%7B01%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$29,299.53</span>
Aquí está las respuestas y el trabajo de cada una, si tienes alguna pregunta me envías un mensaje o un comentario