Answer:
V220 should be the answer
Answer:
a) 
b) 
Step-by-step explanation:
By definition, we have that the change rate of salt in the tank is
, where
is the rate of salt entering and
is the rate of salt going outside.
Then we have,
, and

So we obtain.
, then
, and using the integrating factor
, therefore
, we get
, after integrating both sides
, therefore
, to find
we know that the tank initially contains a salt concentration of 10 g/L, that means the initial conditions
, so 

Finally we can write an expression for the amount of salt in the tank at any time t, it is 
b) The tank will overflow due Rin>Rout, at a rate of
, due we have 500 L to overflow
, so we can evualuate the expression of a)
, is the salt concentration when the tank overflows
Answer:
<em>Hi</em><em> </em><em>there</em><em>!</em><em>!</em>
<em>The</em><em> </em><em>answer</em><em> </em><em>would be</em><em> </em><em>x</em><em>=</em><em>2</em><em>0</em><em> </em><em>and</em><em> </em><em>y</em><em>=</em><em> </em><em>1</em><em>0</em><em> </em><em>root</em><em> </em><em> </em><em>3</em><em> </em><em>or</em><em> </em><em>on</em><em> </em><em>decimal</em><em> </em><em>it's</em><em> </em><em>1</em><em>7</em><em>.</em><em>3</em><em>2</em><em>.</em>
<em>explanation</em><em> </em><em>look</em><em> </em><em>in</em><em> </em><em>picture</em><em>,</em><em> </em><em>alright</em><em>. </em>
<em><u>I</u></em><em><u> </u></em><em><u>hope</u></em><em><u> </u></em><em><u>it will</u></em><em><u> </u></em><em><u>help u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
620
Step-by-step explanation:
55800/90
Answer:
rrrrrehwhwjwmkwwuwiwiiwiwiwiw