Answer:
<em>m∠C = 30° </em>
Step-by-step explanation:
If ΔADB is an equilateral, then m∠A = m∠ADB = m∠DBA = 60°
If ΔDBC isosceles with DB ≅ BC, then m∠C = m∠BDC ;
m∠C + m∠BDC = m∠DBA = 60° ⇒ <em>m∠C = 30°</em>
I this the answer you are looking for would probably be 47.7%.
hope this helps!!
I can assure you that it is A
Answer:
15
Step-by-step explanation:
Substitute a and b then
Follow PEMDAS
Hope this helps! :)
9514 1404 393
Answer:
f'(x) = (-6x² -14x -23)/(x² +5x +2)²
f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³
Step-by-step explanation:
The applicable derivative formula is ...
d(u/v) = (v·du -u·dv)/v²
__
f'(x) = ((-x² -5x -2)(4x +4) -(2x² +4x -3)(-2x -5))/(-x² -5x -2)²
f'(x) = (-4x³ -24x²-28x -8 +4x³ +18x² +14x -15)/(x² +5x +2)²
f'(x) = (-6x² -14x -23)/(x² +5x +2)²
__
Similarly, the second derivative is the derivative of f'(x).
f''(x) = ((x² +5x +2)²(-12x -14) -(-6x² -14x -23)(2(x² +5x +2)(2x +5)))/(x² +5x +2)⁴
f''(x) = ((x² +5x +2)(-12x -14) +2(6x² +14x +23)(2x +5))/(x² +5x +2)³
f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³