Answer:
None of the expression are equivalent to 
Step-by-step explanation:
Given

Required
Find its equivalents
We start by expanding the given expression

Expand 49


Using laws of indices: 


This implies that; each of the following options A,B and C must be equivalent to
or alternatively, 
A. 
Using law of indices which states;

Applying this law to the numerator; we have

Expand expression in bracket


Also; Using law of indices which states;

becomes

This is not equivalent to 
B. 
Expand numerator


Using law of indices which states;

Applying this law to the numerator; we have


Also; Using law of indices which states;

= 
This is also not equivalent to 
C. 



Using law of indices which states;


This is also not equivalent to 
I'll just take the points thanks XD
If there was a chart with this that would be helpful but at this time with the information you have given you can not solve this problem
<h3>
Answer: Choice B</h3>
With matrix subtraction, you simply subtract the corresponding values.
I like to think of it as if you had 2 buses. Each bus is a rectangle array of seats. Each seat would be a box where there's a number inside. Each seat is also labeled in a way so you can find it very quickly (eg: "seat C1" for row C, 1st seat on the very left). The rule is that you can only subtract values that are in the same seat between the two buses.
So in this case, we subtract the first upper left corner values 14 and 15 to get 14-15 = -1. The only answer that has this is choice B. So we can stop here if needed.
If we kept going then the other values would be...
row1,column2: P-R = -33-16 = -49
row1,column3: P-R = 28-(-24) = 52
row2,column1: P-R = 42-25 = 17
row2,column2: P-R = 35-(-30) = 65
row2,column3: P-R = -19-36 = -55
The values in bold correspond to the proper values shown in choice B.
As you can probably guess by now, matrix addition and subtraction is only possible if the two matrices are the same size (same number of rows, same number of columns). The matrices don't have to be square.