A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.
Answer: 
Step-by-step explanation:


That would be a scalene because none of the sides are congruent (the same size)
950 is a real number, and it is a rational number since it can be expressed as 950/1. Therefore, it falls into all of the categories expect irrational numbers.
I'm going to assume that the room is a rectangle.
The area of a rectangle is A = lw, where l=length of the rectangle and w=width of the rectangle.
You're given that the length, l = (x+5)ft and the width, w = (x+4)ft. You're also told that the area, A = 600 sq. ft. Plug these values into the equation for the area of a rectangle and FOIL to multiply the two factors:

Now subtract 600 from both sides to get a quadratic equation that's equal to zero. That way you can factor the quadratic to find the roots/solutions of your equation. One of the solutions is the value of x that you would use to find the dimensions of the room:

Now you know that x could be -29 or 20. For dimensions, the value of x must give you a positive value for length and width. That means x can only be 20. Plugging x=20 into your equations for the length and width, you get:
Length = x + 5 = 20 + 5 = 25 ft.
Width = x + 4 = 20 + 4 = 24 ft.
The dimensions of your room are 25ft (length) by 24ft (width).