1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djyliett [7]
2 years ago
6

A factory that manufactures bolts is performing a quality control experiment. Each object should have a length of no more than 1

5 centimeters. The factory believes that the length of the bolts exceeds this value and measures the length of 75 bolts. The sample mean bolt length was 15.07 centimeters. The population standard deviation is known to be a = 0.26 centimeters. What is the test statistic z? Ex: 1.23 What is the p-value? Ex. 0.123 Does sufficient evidence exist that the length of bolts is actually greater than the mean value at a significance level of a 0.01? ​
Mathematics
1 answer:
xeze [42]2 years ago
3 0

The test statistic z  is 2.33, the p-value corresponding to the test statistic z value is 0.0099.

<h3>What is Probability?</h3>

Probability is the measure of the likeliness of happening of an event.

The mean of the data is 15.07 centimeters

The standard deviation of the data is 0.26 centimeters.

n = 75

Significance Level ∝ = 0.01

According to the null and alternative hypothesis

Hₐ : \rm \mu ≤15  vs H₁ : \rm \mu >15

The test statistic z  is given by

\rm Z = \dfrac{(X-\mu)}{\sigma/\sqrt{n}}

Z = ( 15.07 -15)/(0.26/√75)

Z = 2.33

The p-value corresponding to z value is 0.0099

as p-value < significance level, therefore the H₁ : \rm \mu >15 is acceptable.

No, significant evidence is not present to tell that the length of bolts is actually greater than the mean value at a significance level of 0.01.

To know more about Probability

brainly.com/question/11234923

#SPJ2

You might be interested in
ANSWER ASAP AND SHOW ALL WORK
Margaret [11]

Answer:

C

Step-by-step explanation: Because Median is all the numbers put in order least to greatest. Then the middle number.

Store A: 15, 25, 45, 55, 64

Store B: 22, 35, 40, 65, 71

8 0
3 years ago
5h+6y+4h+9y=3h+5y6h+9y
Leokris [45]
H=6y/5y^(6) -6

hope this helps!!!!!!!!
3 0
3 years ago
A 1/17th scale model of a new hybrid car is tested in a wind tunnel at the same Reynolds number as that of the full-scale protot
Olegator [25]

Answer:

The ratio of the drag coefficients \dfrac{F_m}{F_p} is approximately 0.0002

Step-by-step explanation:

The given Reynolds number of the model = The Reynolds number of the prototype

The drag coefficient of the model, c_{m} = The drag coefficient of the prototype, c_{p}

The medium of the test for the model, \rho_m = The medium of the test for the prototype, \rho_p

The drag force is given as follows;

F_D = C_D \times A \times  \dfrac{\rho \cdot V^2}{2}

We have;

L_p = \dfrac{\rho _p}{\rho _m} \times \left(\dfrac{V_p}{V_m} \right)^2 \times \left(\dfrac{c_p}{c_m} \right)^2 \times L_m

Therefore;

\dfrac{L_p}{L_m}  = \dfrac{\rho _p}{\rho _m} \times \left(\dfrac{V_p}{V_m} \right)^2 \times \left(\dfrac{c_p}{c_m} \right)^2

\dfrac{L_p}{L_m}  =\dfrac{17}{1}

\therefore \dfrac{L_p}{L_m}  = \dfrac{17}{1} =\dfrac{\rho _p}{\rho _p} \times \left(\dfrac{V_p}{V_m} \right)^2 \times \left(\dfrac{c_p}{c_p} \right)^2 = \left(\dfrac{V_p}{V_m} \right)^2

\dfrac{17}{1} = \left(\dfrac{V_p}{V_m} \right)^2

\dfrac{F_p}{F_m}  = \dfrac{c_p \times A_p \times  \dfrac{\rho_p \cdot V_p^2}{2}}{c_m \times A_m \times  \dfrac{\rho_m \cdot V_m^2}{2}} = \dfrac{A_p}{A_m} \times \dfrac{V_p^2}{V_m^2}

\dfrac{A_m}{A_p} = \left( \dfrac{1}{17} \right)^2

\dfrac{F_p}{F_m}  = \dfrac{A_p}{A_m} \times \dfrac{V_p^2}{V_m^2}= \left (\dfrac{17}{1} \right)^2 \times \left( \left\dfrac{17}{1} \right) = 17^3

\dfrac{F_m}{F_p}  = \left( \left\dfrac{1}{17} \right)^3= (1/17)^3 ≈ 0.0002

The ratio of the drag coefficients \dfrac{F_m}{F_p} ≈ 0.0002.

5 0
3 years ago
What is 9^2+a= square root of 113 what is the value of a
sergiy2304 [10]
A= -81 + square root of 113
a<span>≈</span> -70.36985418
5 0
3 years ago
A researcher plans to study the causal effect of a strong legal system on economy, using data from a random sample of U.S. count
kogti [31]

Answer:

Based on expert opinion the regression does not suffer from omitted variable bias

Step-by-step explanation:

<em>Based on expert opinion the regression does not suffer from omitted variable bias </em>because its indicators taking values of 1 and 0 where 1 would represent taking action by the legal system  and 0 would represent not taking action by the legal system. as

The researcher plans to regress national income per capita based on the effect of the legal system

applying the formula for addressing omitted variable bias ( attached below )

7 0
3 years ago
Other questions:
  • 7,920 yd = mi ?? but, as a fraction.
    10·1 answer
  • Solve by both sides variable josh has two leaking pipes in his basement. while waiting for the plumber to come, josh puts a buck
    11·1 answer
  • Rosanne is training for the Austin marathon, so she plans to run 10 miles in her neighborhood this weekend. It usually takes her
    7·1 answer
  • If f(x) =6x -4,whats is f(x) when x =8?
    7·1 answer
  • The number of bacteria grew from 275 to 1135 in 3 hours. Find the number of bacteria to grow to 5000
    11·2 answers
  • Find the slope for -8y=2x+5
    8·2 answers
  • Anyone know how to do this ??? i need it now
    9·2 answers
  • The same survey database cited in exercise 4.3.1 (A-5) shows that 32 percent of U.S. adults indicated that they have been tested
    14·1 answer
  • For a project in her Geometry class, Kylie uses a mirror on the ground to measure the
    8·1 answer
  • The top of a glass coffee table is a circle. the circumference is 15.7 feet. what is the area of the table? helppp!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!