<u>The given options are:</u>
(A)the central angle measure of the sector divided by the total angle measure of a circle multiplied by the area of the circle will yield the area of the sector.
(B)the central angle measure of the sector divided by the total angle measure of a circle multiplied by the circumference of the circle will yield the area of the sector.
(C)the central angle measure of the sector multiplied by the area of the circle will yield the area of the sector.
(D)the central angle measure of the sector multiplied by the circumference of the circle will yield the area of the sector.
Answer:
(A)the central angle measure of the sector divided by the total angle measure of a circle multiplied by the area of the circle will yield the area of the sector.
Step-by-step explanation:
The area of the shaded sector can be determined using the formula:



Therefore, the formula is:

Therefore, the formula is best explained by Option A.
Answer:
hi if you want to solve fore x and y there must be 2 equations .
Step-by-step explanation:
so that you could solve them simultaneously
-7x + 2y = 4
here 2y - 4 = 7x
( 2y -4)/7 = x
Answer:
904.78
Step-by-step explanation:
A sphere with a radius of 6 units has a volume of 904.78 units
Answer:
30°
Step-by-step explanation:
Call the other end of the chord point B and the center of the circle point O. Then triangle AOB is an equilateral triangle, since OA = OB = AB.
Angle OAB is the internal angle of that triangle, so is 60°. Since OA is perpendicular to the tangent line (makes an angle of 90°), The angle between the tangent line and the chord must be ...
90° - 60° = 30°
___
The other way you know this is that central angle AOB is 60°, and the tangent-to-chord angle is half that, or 30°.
_____
One way to remember the angle relationship between a tangent line and a chord is this:
Consider a point C on long arc AB. The measure of inscribed angle ACB is half the measure of central angle AOB, no matter where C is on the circle. (If C happens to be on the short arc AB, then central angle AOB is a reflex angle, but the relationship still holds.) Consider what happens when C approaches A. The angle at vertex C is still the same: 1/2 the measure of central angle AOB. This remains true even in the limit when points A and C become coincident and line AC is a tangent at point A.
Answer:
There is no solution.
Step-by-step explanation:
Math
Way