Sounds to me as tho you are to graph 3x+5y<10, and that after doing so you are to restrict the shaded answer area created by the "constraint" inequality x≤y+1. OR x-1 ≤ y OR y≥x-1. If this is the correct assumption, then please finish the last part of y our problem statement by typing {x-y<=1}.
First graph 3x+5y = 10, using a dashed line instead of a solid line.
x-intercept will be 10/3 and y-intercept will be 2. Now, because of the < symbol, shade the coordinate plane BELOW this dashed line.
Next, graph y=x-1. y-intercept is -1 and x intercept is 1. Shade the graph area ABOVE this solid line.
The 2 lines intersect at (1.875, 0.875). To the LEFT of this point is a wedge-shaped area bounded by the 2 lines mentioned. That wedge-shaped area is the solution set for this problem.
That's two questions.
The answer to the second question is: Yes.
The answer to the first question is:
Multiply 60 miles per hour by ' 1 ' a few times. Use fractions that have
the same thing on top and bottom, since those are always equal to ' 1 '.
Then cancel units if the same unit is on the top and the bottom.
Here's how it goes:
(60 mi/hr) x (5280 ft/mile) x (1hr/3600 sec) = (60 x 5280 / 3600) ft/sec = <u>88 ft/sec</u>
<span>Let the height of tree be denoted as AB and the shadow cast by the tree be BE. ABE is the triangle formed the tree, rays and the ground. Let the height of the person be CD and the length of his shadow be DE. CDE is the triangle formed by the person, rays and the ground.
We have two triangles. Both the person and the tree stand vertically over the horizontal ground, therefore they make 90 degrees with the ground. The angle formed at the ground is the same for the both the triangles. Therefore, by AA similarity the two triangles are similar.
We know that if two triangles are similar, then their sides are proportional.
Therefore,
AB/CD =BE/DE
AB/6 = 143/11
AB= (143/11) *6
AB = 78 ft.</span>
3.97, 4 is less than 5 so you round down, and you should round to the nearest hundredths
We need to know the function that models the difference in the number of customers visiting the two stores.
We know the function that models the number of customers in the cafeteria
W (x) = 0.002x3 - 0.01x2
We also know the function that models the number of customers who visit the ice cream parlor
R (x) = x2 - 4x + 13
Therefore the difference, D (x), in the number of customers visiting the two stores is:
D (x) = W (x) - R (x)
D (x) = 0.002x ^ 3 - 0.01x ^ 2 - (x ^ 2 -4x +13)
D (x) = 0.002x ^ 3 - 0.01x ^ 2 - x ^ 2 + 4x -13
D (x) = 0.002x ^ 3 - 1.01x ^ 2 + 4x -13
<span> The answer is the third option</span>