Answer:
The first one (A) is the answer I got!
Step-by-step explanation:
Answer: the function g(x) has the smallest minimum y-value.
Explanation:
1) The function f(x) = 3x² + 12x + 16 is a parabola.
The vertex of the parabola is the minimum or maximum on the parabola.
If the parabola open down then the vertex is a maximum, and if the parabola open upward the vertex is a minimum.
The sign of the coefficient of the quadratic term tells whether the parabola opens upward or downward.
When such coefficient is positive, the parabola opens upward (so it has a minimum); when the coefficient is negative the parabola opens downward (so it has a maximum).
Here the coefficient is positive (3), which tells that the vertex of the parabola is a miimum.
Then, finding the minimum value of the function is done by finding the vertex.
I will change the form of the function to the vertex form by completing squares:
Given: 3x² + 12x + 16
Group: (3x² + 12x) + 16
Common factor: 3 [x² + 4x ] + 16
Complete squares: 3[ ( x² + 4x + 4) - 4] + 16
Factor the trinomial: 3 [(x + 2)² - 4] + 16
Distributive property: 3 (x + 2)² - 12 + 16
Combine like terms: 3 (x + 2)² + 4
That is the vertex form: A(x - h)² + k, whch means that the vertex is (h,k) = (-2, 4).
Then the minimum value is 4 (when x = - 2).
2) The othe function is <span>g(x)= 2 *sin(x-pi)
</span>
The sine function goes from -1 to + 1, so the minimum value of sin(x - pi) is - 1.
When you multiply by 2, you just increased the amplitude of the function and obtain the new minimum value is 2 (-1) = - 2
Comparing the two minima, you have 4 vs - 2, and so the function g(x) has the smallest minimum y-value.
Answer:
x < -6
Step-by-step explanation:
quick explanation: when you transfer (-9) to the other side it becomes +9.
Therefore, -15+9= -6
If we divide the area we have to cover by the area of a piece, we will get the number of pieces needed:

Hi! I'm happy to help!
To solve this, we first need to look at the perimeter equation:
P=2L+2W
We don't know our length, so we can represent it with x. Since our width is 2 feet shorter than x, we can represent it with x-2. Now, we plug these values into our equation:
56=2x+(2(x-2))
Let's simplify what the width is by multiplying:
56=2x+2x-4
Now, let's combine our 2xs
56=4x-4
Now, we just need to solve for x in order to find our length and width.
First, we need to isolate x on one side of the equation. We can do this by adding 4 to both sides:
56=4x-4
+4 +4
60=4x
Now, all we have to do is divide both sides by 4 and x will be fully isolated:
60=4x
÷4 ÷4
15=x
Now that we know x, let's plug this into our previous equations:
L=x=15
<u>L=15</u>
W=x-2=15-2=13
<u>W=13</u>
To verify our answers, we can plug this into our perimeter equation:
56=2(15)+2(13)
56=30+36
56=56
After double checking our answers, we know that our length is 15 and our width is 13.
I hope this was helpful, keep learning! :D