In a game of rock paper scissors, what are the chances that someone playing against a person playing only paper would win?
As for the answer, if you were to make a chart to show rock, paper, and scissors, you'd be able to see that there's a 2/3 chance of winning by choosing rock. With scissors, there's also a 2/3 chance to win. Now with paper, there's only a 1/3 chance to win. Knowing that the other person will only play paper, the best answers would be to choose either rock or scissors.
(there are, of course, flaws with this concept, because the opponent could be lying about playing only paper. More or less, it's a good design to show probability.)
Begin by finding the lowest point the quadratic equation can be, the vertex;
x²-1= is just a translation down of the graph x²
vertex; (0, -1) and since the graph of x² would extend to infinity beyond that point, we can say {x| x≥0} for domain and {y| y≥-1}.
For the linear equation, it is possible to have all x and y values, therefore range and domain belong to all real numbers.
Hope I helped :)
Answer:
90 stamps
Step-by-step explanation:
We can solve this by writing an equation.
(38+26)+26
64+26
90
Therefore, they have 90 stamps altogether.
I don't think that anybody in Elementary School would Understand this you might want to post this question in the High School section.
Hope it gets answered :)
In interval <a, b> the average rate of change the function you count from this formula:

Here you've got a=-1 and b=1: