Answer:
6
Step-by-step explanation:
First, we can expand the function to get its expanded form and to figure out what degree it is. For a polynomial function with one variable, the degree is the largest exponent value (once fully expanded/simplified) of the entire function that is connected to a variable. For example, x²+1 has a degree of 2, as 2 is the largest exponent value connected to a variable. Similarly, x³+2^5 has a degree of 2 as 5 is not an exponent value connected to a variable.
Expanding, we get
(x³-3x+1)² = (x³-3x+1)(x³-3x+1)
= x^6 - 3x^4 +x³ - 3x^4 +9x²-3x + x³-3x+1
= x^6 - 6x^4 + 2x³ +9x²-6x + 1
In this function, the largest exponential value connected to the variable, x, is 6. Therefore, this is to the 6th degree. The fundamental theorem of algebra states that a polynomial of degree n has n roots, and as this is of degree 6, this has 6 roots
Answer:
Rectangle C is not similar to the other 2
Step-by-step explanation:
3*2=6
1*2=2
Answer:
81
Step-by-step explanation:
9 x 9 = 81
So, 81 is the perfect square.
It can never be a square.
Answer:
OPTION B - 41
Step-by-step explanation:
An expression is given and the corresponding values for the expression are also given. We have to substitute the given values to arrive at the answer.
The given expression is: x + 3y + z.
Also given: x = 4, y = 5, z = 22.
Substitute these values in the above expression, we get:
4 + 3(5) + 22 = 4 + 15 + 22 = 41.
∴ x + 3y + z = 41