Answer:
Step-by-step explanation:
Having drawn the line, Kendall must verify that the point P belongs to the line y = 2x-1 and then calculate the distance between A-P and verify if it is the closest to A or there is another one of the line
Having the point P(3,5) substitue x to verify y
y=2*(3)-1=6-1=5 (3,5)
Now if the angle formed by A and P is 90º it means that it is the closest point, otherwise that point must be found

and we found the distance PQ and QA
;
, 
be the APQ triangle we must find <APQ through the cosine law (graph 2).
Answer:
<h2>here's the answer</h2>
Step-by-step explanation:



The plot that organizes the data into 4 groups of equal sizes is box and whisker plot.
The image below shows a box and whisker plot. Following are the elements of box and whisker plot:
Minimum = This is the smallest value of the data set
Q1 = First (Lower) Quartile of the data set. 25% of the data values lie below this point
Q2 = Second Quartile or Median. This is the central value so 50% of the data values lie below this point
Q3 = Third (Upper) Quartile of the data set. 75% of the data values lie below this point.
Maximum = This is the maximum value of the data set.
Based on box and whisker plot we can compare two or more sets of data by comparing the spread of the data. We can also directly observe from the box and whisker plot if the data is uniform, normal or skewed. Using box and whisker plot we can also visualize any outliers that may be in the data.
Answer:
a. direct
Step-by-step explanation:
direct variation is y = kx and y = -2/5x is written in direct variation.
The average rate of change of a function f(x) in an interval, a < x < b is given by

Given q(x) = (x + 3)^2
1.) The average rate of change of q(x) in the interval -6 ≤ x ≤ -4 is given by

2.) The average rate of change of q(x) in the interval -3 ≤ x ≤ 0 is given by

3.) The average rate of change of q(x) in the interval -6 ≤ x ≤ -3 is given by

4.) The average rate of change of q(x) in the interval -3 ≤ x ≤ -2 is given by

5.) The average rate of change of q(x) in the interval -4 ≤ x ≤ -3 is given by

6.) The average rate of change of q(x) in the interval -6 ≤ x ≤ 0 is given by