The answer to your question is 4600.
You can take the log of the left and right hand side, and then apply the <span>logarithm rules:
log(a</span>ˣ) = x·log(a)
log(ab) = log(a) + log(b)
log(9^(x-1) * 2^(2x+2)) = log(6^(3x))
log(9^(x-1)) + log(2^(2x+2)) = 3x log(6)
(x-1) log(9) + (2x+2) log(2) - 3x log(6) = 0
x(log9 + 2log2 - 3log6) = log9 - 2log2
x = (log9 - 2log2) / (log9 + 2log2 - 3log6)
simplifying by writing log9 = 2log3 and log6 = log2+log3
x= 2(log3 - log2) / (2log3 + 2log2 - 3log2 - 3log3) =
x= -2(log3 - log2) / (log3 + log2) = -2 log(3/2) / log(6)
So 6^x = 4/9
The answer is: 45 * 10 ⁻¹¹ .
___________________________________________
Explanation:
____________________________________________
Given: (9 * 10⁻⁵) * (5 *10 ⁻⁶) ; Simplify.
____________________________________________
(9 * 10⁻⁵) * (5 *10⁻⁶) =
9 * 5 * 10⁻⁵ * 10⁻⁶ =
(9 * 5) * 10⁻⁵ * 10⁻⁶
45 * 10⁻⁵ * 10⁻⁶ ;
______________________________________
Note the following property of exponents:
xᵃ * xᵇ = x⁽ᵃ⁺ᵇ⁾ ;
As such, 10⁻⁵ * 10⁻⁶ = 10⁽⁻⁵ ⁺ ⁻⁶) = 10 ⁻¹¹ ;
______________________________________
So; 45 * 10⁻⁵ * 10⁻⁶
= 45 * 10⁻¹¹ .
______________________________________
Whatever your color eyes are
hope this helps
Lemme think bout it....no