When the child jumps onto the merry-go-around the moment of inertia of the system changes. If we consider the child to be point-like mass then its moment of inertia would be:

We get the new moment of inertia by simply adding the child's moment of inertia to the old moment of inertia.

Since there is no force mention we must assume that angular momentum is conserved.

When we plug in all the numbers we get:
To determine the amplitude of a wave, you would need to know the : B. Maximum displacement of the wave from the equilibrium position
You can find out the displacement by counting the waves that is
written on the Graph
Hope this helps
Answer:
q2 = -4.35*10^-9C
Explanation:
In order to find the values of the second charge, you use the following formula:
(1)
V: electric potential = 1.14 kV = 1.14*10^3 kV
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
q1: charge 1 = 8.60*10^-9 C
q2: charge 2 = ?
r1: distance to the first charge = 20.7mm = 20.7*10^-3 m
r2: distance to the second charge = 15.1mm
You solve the equation (1) for q2, and replace the values of the other parameters:
![q_2=\frac{r_2}{k}[V-k\frac{q_1}{r_1}]=\frac{Vr_2}{k}-\frac{q_1r_2}{r_1}\\\\q_2=\frac{(1.14*10^3V)(15.1*10^{-3}m)}{8.98*10^9Nm^2/C^2}-\frac{(8.60*10^{-9}C)(15.1*10^{-3}m)}{20.7*10^{-3}m}\\\\q_2=-4.35*10^{-9}C](https://tex.z-dn.net/?f=q_2%3D%5Cfrac%7Br_2%7D%7Bk%7D%5BV-k%5Cfrac%7Bq_1%7D%7Br_1%7D%5D%3D%5Cfrac%7BVr_2%7D%7Bk%7D-%5Cfrac%7Bq_1r_2%7D%7Br_1%7D%5C%5C%5C%5Cq_2%3D%5Cfrac%7B%281.14%2A10%5E3V%29%2815.1%2A10%5E%7B-3%7Dm%29%7D%7B8.98%2A10%5E9Nm%5E2%2FC%5E2%7D-%5Cfrac%7B%288.60%2A10%5E%7B-9%7DC%29%2815.1%2A10%5E%7B-3%7Dm%29%7D%7B20.7%2A10%5E%7B-3%7Dm%7D%5C%5C%5C%5Cq_2%3D-4.35%2A10%5E%7B-9%7DC)
The values of the second charge is -4.35*10^-9C
Unlike a ball, an atom doesn't have a fixed radius. The radius of an atom can only be found by measuring the distance between the nuclei of two touching atoms, and then halving that distance... Does that answer your question?
Answer:
Heat or thermal energy!!!
Explanation: When heat is added the particles speed up at rapid rates causing the state of the object to change nd in order to melt it must be heated.