Answer:
78 N s
Explanation:
The impulse exerted on the ball is given by:

where
F is the magnitude of the force
is the duration of the collision
In this problem,
F = 39 N

Substituting,

The distance that is measured in the most accurate manner is letter c. This is because centimeters is the smallest unit of measurement. The given choices show that the first two measurements are expressed with decimal places but the graduations of each are greater compared to centimeters.
Answer:
7.15 m/s
Explanation:
We use a frame of reference in which the origin is at the point where the trucck passed the car and that moment is t=0. The X axis of the frame of reference is in the direction the vehicles move.
The truck moves at constant speed, we can use the equation for position under constant speed:
Xt = X0 + v*t
The car is accelerating with constant acceleration, we can use this equation
Xc = X0 + V0*t + 1/2*a*t^2
We know that both vehicles will meet again at x = 578
Replacing this in the equation of the truck:
578 = 24 * t
We get the time when the car passes the truck
t = 578 / 24 = 24.08 s
Before replacing the values on the car equation, we rearrange it:
Xc = X0 + V0*t + 1/2*a*t^2
V0*t = Xc - 1/2*a*t^2
V0 = (Xc - 1/2*a*t^2)/t
Now we replace
V0 = (578 - 1/2*1.4*24.08^2) / 24.08 = 7.15 m/s
Answer:
79.2 m/s
Explanation:
θ = angle at which projectile is launched = 29.7 deg
a = initial speed of launch = 130 m/s
Consider the motion along the vertical direction
v₀ = initial velocity along the vertical direction = a Sinθ = 130 Sin29.7 = 64.4 m/s
y = vertical displacement = - 108 m
a = acceleration = - 9.8 m/s²
v = final speed as it strikes the ground
Using the kinematics equation
v² = v₀² + 2 a y
v² = 64.4² + 2 (-9.8) (-108)
v = 79.2 m/s