Temporarily subdivide the given area into two parts: a large rectangle and a parallelogram. Find the areas of these two shapes separately and then combine them for the total area of the figure.
By counting squares on the graph, we see that the longest side of the rectangle is the hypotenuse of a triangle whose legs are 8 and 2. Applying the Pyth. Thm., we find that this length is √(8^2+2^2), or √68. Similarly, we find the the width of this rectangle is √(17). Thus, the area of the rectangle is √(17*68), or 34 square units.
This leaves the area of the parallelogram to be found. The length of one of the longer sides of the parallelogram is 6 and the width of the parallelogram is 1. Thus, the area of the parallelogram is A = 6(1) = 6 square units.
The total area of the given figure is then 34+6, or 40, square units.
Answer: Check Explanation
Step-by-step explanation:
The current area is 12x4 which is 48yards^2. 60 percent of that is 48x0.4=19.2. Now you can just put some random numbers that when multiplied = 19.2. For ex. 2 and 9.6, 4 and 4.8.
ax² + bx + c = 0
x = (-b ± √(b² - 4ac))/2a
First, rewrite the first equation so that the first coefficient is 1. Divide everything by a.
(ax² + bx + c = 0)/a =
x² + (b/a)x + (c/a) = 0
Isolate (c/a) by subtracting (c/a) from both sides
x² + (b/a)x + (c/a) (-(c/a) = 0 (- (c/a)
x² + (b/a)x = 0 - (c/a)
Add spaces
x² + (b/a)x = -c/a
Take 1/2 of the middle term's coefficient and square it. Remember that what you add to one side, you add to the other.
x² + (b/a)x + (b/2a)² = -c/a + (b/2a)²
Simplify the left side of the equation.
x² + (b/a)x + (b/2a)² = (x + (b/2a))²
(x + b/2a))² = ((b²/4a²) - (4ac/4a²)) -> ((b² - 4ac)/(4a²))
Take the square root of both sides of the equation
√(x + b/2a))² = √((b²/4a²) - (4ac/4a²))
x + b/(2a) = (±√(b² - 4ac)/2a
Simplify. Isolate the x.
x = -(b/2a) ± (∛b² - 4ac)/2a = (-b ± √(b² - 4ac))/2a
~
Answer:
156 degrees
Step-by-step explanation:
The four angles in any quadrilateral add to 360 degrees. Add the given degrees and subtract that number from 360 for your answer
Hello There!
<h2>
EQUATION 15+M=35</h2><h2>
</h2><h2>M = 20 MILES</h2>