I don't think changing seasons can REMOVE CO2 from the air, but I do think instead it could add it to the air. It's a long process that involves several ecosystems and stuff. But, as the climate is getting warmer, ice caps are melting and within these ice caps... there are trapped bubbles of CO2 that are released ( I am not sure if this adds a lot of CO2 to the atmosphere, but I am sure that it does contribute to CO2 concentration).
In relation to your last statement... plant growth would actually reduce CO2 in the air because of the process of photosynthesis. Plants take in CO2 and give out O2 for us to breathe. In turn we conduct cellular respiration in which we take in the O2 and give out the CO2. So, plants are actually one good solution for decreasing CO2 levels.
<span>The action of Helicase is to create replication forks and replication bubbles. Helicase is the first step in the DNA replication process. Helicase is an enzyme that breaks the hydrogen bond between the parental DNA to free the DNA double helix. The area where it unwinds is called as replication fork.</span>
Extinction DIF; Having no more existing or living members
The correct answer is that "the T cell enters a state of anergy".
The activation of T cells requires two signals: (1) antigen specific signal presented by an antigen presenting cell (either a macrophage or a dendritic cell) that activates t cell receptors and (2) co-stimulatory signals that is not antigen specific but rather found in the plasma membrane of the antigen presenting cell (i.e. CD28). In the absence of a co-stimulatory signal, the t cell will enter a state of anergy or the inability to produce an immune response toward an offending antigen.
Answer:
I believe it would be the first option