Answer:
(a) 0.873 (b) 0.007 (c) 0.715 (d) 0.277 (e) 1.25 and 1.09
Step-by-step explanation:
The probability that the random variable X takes the value x is given by P(X=x) =
. Then,
(a) ![P(X\leq) = (25C0)(0.05^0)(0.95^{25}) + (25C1)(0.05^1)(0.95^{24}) + (25C2)(0.05^2)(0.95^{23})= 0.873](https://tex.z-dn.net/?f=P%28X%5Cleq%29%20%3D%20%2825C0%29%280.05%5E0%29%280.95%5E%7B25%7D%29%20%2B%20%2825C1%29%280.05%5E1%29%280.95%5E%7B24%7D%29%20%2B%20%2825C2%29%280.05%5E2%29%280.95%5E%7B23%7D%29%3D%20%200.873)
(b) ![P(X\geq5) = 1-P(X\leq4) = 1 - (0.873 + (25C3)(0.05^3)(0.95^{22}) + (25C4)(0.05^4)(0.95^{21})) = 1 - (0.873 + 0.12) = 0.007](https://tex.z-dn.net/?f=P%28X%5Cgeq5%29%20%3D%201-P%28X%5Cleq4%29%20%3D%201%20-%20%280.873%20%2B%20%2825C3%29%280.05%5E3%29%280.95%5E%7B22%7D%29%20%2B%20%2825C4%29%280.05%5E4%29%280.95%5E%7B21%7D%29%29%20%3D%201%20-%20%280.873%20%2B%200.12%29%20%3D%200.007)
(c) ![P(1\leqX\leq4) = (25C1)(0.05^1)(0.95^{24}) + (25C2)(0.05^2)(0.95^{23}) + (25C3)(0.05^3)(0.95^{22}) + (25C4)(0.05^4)(0.95^{21}) = 0.715](https://tex.z-dn.net/?f=P%281%5CleqX%5Cleq4%29%20%3D%20%2825C1%29%280.05%5E1%29%280.95%5E%7B24%7D%29%20%2B%20%2825C2%29%280.05%5E2%29%280.95%5E%7B23%7D%29%20%2B%20%2825C3%29%280.05%5E3%29%280.95%5E%7B22%7D%29%20%2B%20%2825C4%29%280.05%5E4%29%280.95%5E%7B21%7D%29%20%3D%200.715)
(d)
(e) E(X) = np = (25)(0.05) = 1.25 and ![Sd(X) = \sqrt{Var(X)} = \sqrt{np(1-p)} = 1.09](https://tex.z-dn.net/?f=Sd%28X%29%20%3D%20%5Csqrt%7BVar%28X%29%7D%20%3D%20%5Csqrt%7Bnp%281-p%29%7D%20%3D%201.09)
Answer:
School buses range anywhere from 20 to 45 feet in length ok?
To resolve the proposed issue, an explanation is needed in which the subject is addressed
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer: A= 1 b= -8 c= -20
Explanation:
I hope this helped!
<!> Brainliest is appreciated! <!>
- Zack Slocum
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer:
35 cm
Step-by-step explanation:
You can use the Cosine Rule to find the length of a side when two sides and the included angle are given.
a² = b² + c² - 2bc cos A
a² = (36²) + (52²) - 2(36)(52) cos 42°
a² = (1296) + (2704) - (3744)(0.7431448255)
a² = (4000) - (2782)
a² = 1218
a = ✓1218
a = 34.9 cm