1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RUDIKE [14]
2 years ago
8

Please helpare these functions or not?​

Mathematics
1 answer:
crimeas [40]2 years ago
5 0

Answer:

1. Function

2. Not a function

3. Function

4. Not a function

Step-by-step explanation:

A function just means that for each input it outputs only 1 output. This output isn't necessarily unique. So for example if you're just given: f(2) = 3 and f(1) = 3, this is a function since each input only outputs 1 value, even though the output isn't unique, but if you're given: f(3) = 2, f(2) = 1, f(3) = 3. that's not a function since f(3) outputs both 2 and 3.

Anyways now that you hopefully understand this, let's look at each image.


Relation 1: (Function)

   So for each input (the domain) it's only pointing to one output (range), even if multiple input (the domain) are pointing to the same output (the range), it's still a function.

Relation 2: (Not a function)

   This is not a function, since if you look at the input 7 (the range), you'll see it outputs two things (range). It outputs -6 and -7. So this is not a function

Relation 3: (Function)

   This is a function since each x-value (input) has only one y-value (output). So it's a function

Relation 4: (Not a functio)

   This is not a function, since there are multiply coordinates with the same x-coordinate (input) and different y-coordinates (output). The x-coordinate 2 has the output b, y, and m, and since no value is given for these variables, it can be assumed they're different values, thus it's not a function.

You might be interested in
In right triangle RST, if cos R = 0.6, what is the length of RT?
svet-max [94.6K]

Answer:

1) In right triangle ABC with <A = 90, the ratio for sinB= 5/13. 2) Given ... a) sin (40) = 32/CA b) Cos(50) = 32/ CA ... In triangle RST, angle R is a right angle. If TR = 6 . and ... Determine the length of AC to the nearest 10th.

8 0
3 years ago
What is 5.316 - 1.942 (show ur work)
Fiesta28 [93]

Answer:

3.374

Step-by-step explanation:

\mathrm{Write\:the\:numbers\:one\:under\:the\:other,\:line\:up\:the\:decimal\:points.}

\mathrm{Add\:trailing\:zeroes\:so\:the\:numbers\:have\:the\:same\:length.}

\begin{matrix}\:\:&5&.&3&1&6\\ -&1&.&9&4&2\end{matrix}

\mathrm{Subtract\:each\:column\:of\:digits,\:starting\:from\:the\:right\:and\:working\:left}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:6-2=4

\frac{\begin{matrix}\:\:&5&.&3&1&\textbf{6}\\ -&1&.&9&4&\textbf{2}\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\:\:&\textbf{4}\end{matrix}}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}

\frac{\begin{matrix}\:\:&5&.&3&\textbf{1}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}

\mathrm{The\:bottom\:number\:is\:larger\:than\:the\:upper\:number.\:\:Try\:to\:'borrow'\:a\:digit\:from\:the\:left.}

\mathrm{The\:top\:digit\:is\:not\:bigger\:than\:the\:bottom\:one.\:\:Try\:to\:'borrow'\:a\:digit\:from\:the\:left.}

\frac{\begin{matrix}\:\:&5&.&\textbf{3}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\mathrm{Borrow\:}1\mathrm{\:from\:}5\mathrm{.\:\:The\:remainder\:is\:}4

\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&10&\:\:&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&3&1&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{\:\:}&\:\:&\:\:&\:\:&4\end{matrix}}

\mathrm{Add\:}1\mathrm{\:ten\:to\:}3:\quad \:10+3=13

\frac{\begin{matrix}\:\:&4&\:\:&\textbf{13}&\:\:&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{3}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\mathrm{Borrow\:}1\mathrm{\:from\:}13\mathrm{.\:\:The\:remainder\:is\:}12

\frac{\begin{matrix}\:\:&4&\:\:&\textbf{12}&10&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{13}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\mathrm{Add\:}1\mathrm{\:ten\:to\:}1:\quad \:10+1=11

\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:11-4=7

\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{7}&4\end{matrix}}

\mathrm{Place\:the\:decimal\:point\:in\:the\:answer\:directly\:below\:the\:decimal\:points\:in\:the\:terms}

\frac{\begin{matrix}\:\:&4&\textbf{\:\:}&12&11&\:\:\\ \:\:&\linethrough{5}&\textbf{.}&\linethrough{13}&\linethrough{1}&6\\ -&1&\textbf{.}&9&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\textbf{.}&3&7&4\end{matrix}}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:4-1=3

\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&12&11&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&\linethrough{13}&\linethrough{1}&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{3}&.&3&7&4\end{matrix}}

=3.374

Hence the correct answer is 3.374

7 0
2 years ago
Please help! Related to limits! 100 points!
creativ13 [48]

Answer:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

General Formulas and Concepts:
<u>Pre-Calculus</u>

2x2 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b \\ c & d \end{array} \right| = ad - bc

3x3 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = a \left| \begin{array}{ccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{ccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{ccc} d & e \\ g & h \end{array} \right|

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Limit Property [Multiplied Constant]:
\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Derivatives

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.

<u />

<u>Step 1: Define</u>

<em>Identify given.</em>

<em />\displaystyle \Delta (x) = \left| \begin{array}{ccc} \tan x & \tan (x + h) & \tan (x + 2h) \\ \tan (x + 2h) & \tan x & \tan (x + h) \\ \tan (x + h) & \tan (x + 2h) & \tan x \end{array} \right|

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2}

<u>Step 2: Find Limit Pt. 1</u>

  1. [Function] Simplify [3x3 and 2x2 Matrix Determinant]:
    \displaystyle \Delta (x) = \tan^3 (2h + x) + \tan^3 (h + x) + \tan^3 x - 3 \tan x \tan (h + x) \tan (2h + x)
  2. [Function] Substitute in <em>x</em>:
    \displaystyle \Delta \bigg( \frac{\pi}{3} \bigg) = \tan^3 \bigg( 2h+  \frac{\pi}{3} \bigg) + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) + 3\sqrt{3} - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h+  \frac{\pi}{3} \bigg)

<u>Step 3: Find Limit Pt. 2</u>

  1. [Limit] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \lim_{h \to 0} \frac{\Delta (\frac{\pi}{3})}{h^2}
  2. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \bigg( \frac{0}{0} \bigg)

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":

\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]

\displaystyle \frac{d}{dh} h^2 = 2h

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:

\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]

\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle \frac{d^2}{dh^2} h^2 = 2

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

∴ we have <em>evaluated</em> the given limit.

---

Learn more about limits: brainly.com/question/27438198

---

3 0
2 years ago
Ppppppppeeeelelelelele help
kirill115 [55]
11/3*6/11=66/33=2
6 24/20-2 15/20=2 9/20
5 0
3 years ago
What equation can relate to this sentence 11 is the quotient of a number y and 6 ?
Natalija [7]

Answer: 11 = y ÷ 6

Step-by-step explanation: since the problem says 11 is that means the equation equals 11 and when it says quotient that means that the equation must include division.

4 0
4 years ago
Other questions:
  • How would you figure this out?
    5·2 answers
  • If f(x) = 2x - 5, then f(4) is<br> 17<br> 5<br> 4<br> 3
    9·2 answers
  • Multiply 9 by 6. Then add the regrouped number.
    13·2 answers
  • ASYMPTOTES MATH HELP PLS!<br> Identify the x and y asymptotes of the graph
    14·1 answer
  • Complete the similarity proportion please help!! Show steps
    8·1 answer
  • Help me plis<br><br> X²+2=6x-6
    14·2 answers
  • Which point is the intersection of RS and VT?
    8·1 answer
  • If 5 1/3= x/3 then x=
    15·1 answer
  • Find the degree triangle
    15·1 answer
  • What is a rough prediction the cube would land on 2 or 5 after 180 roll
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!