1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
2 years ago
15

Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​

Mathematics
1 answer:
Gwar [14]2 years ago
5 0

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

You might be interested in
Factor -7x = 21x2 = 3x - 9 by grouping
Verdich [7]
The correct answer is Zero
6 0
3 years ago
<img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B%20%5Cfrac%7B36%7D%7B4%7D%20%7D%20" id="TexFormula1" title=" \sqrt{ \frac{36}{4}
iris [78.8K]

Step-by-step explanation:

\sqrt{36/4} =\sqrt{36} /\sqrt{4}

\sqrt{36}=6

\sqrt{4} =2

6/2=3

Hope that helps :)

7 0
3 years ago
Find the rate in the following problem.
Serjik [45]
Answer is 39.62% 84 is 39.62% of 212. Let's find 39.62% of 212 212 x 39.62% 212 x 39.62/100 83.9944 Which is approximately equal to 84 So the answer is 39.62%
7 0
3 years ago
FREE POINTS DONATION!!! 2 ANSWERS GETS IT!!! GET IT BEFORE SOME ELSE DOES!
matrenka [14]

Answer:

YASS

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
F= z-g/n<br> solve for z
Vera_Pavlovna [14]
Z= F+ (g/n) (you’re welcome)
7 0
3 years ago
Other questions:
  • What is .58 repeating as a fraction
    8·1 answer
  • -2<br> -1<br> 1<br> 2 <br> pls help!!!
    6·2 answers
  • PLEASE HELP!!!!!!!!!
    7·1 answer
  • Help Please giving Brainliest answer!!!!!!!!!!!!!!!!!!
    15·1 answer
  • Can anyone heelp me<br><br><br><br><br><br><br><br> b
    14·1 answer
  • 3.
    7·2 answers
  • Help i need it fast and i did not listen​
    5·1 answer
  • A line that includes the point (9, 10) has a slope of -1/9 what is its equation in point-slope
    8·1 answer
  • What type of angles are these?
    15·2 answers
  • Mr. Gephart is traveling from his house to the history museum. How many meters will he travel to the museum? The distance from h
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!