1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
2 years ago
15

Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​

Mathematics
1 answer:
Gwar [14]2 years ago
5 0

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

You might be interested in
Four students are verifying that
9966 [12]
I am gonna have to go with Latisha's answer.

(x - 3)(x + 4) = x^2 + 4x - 3x - 12 = x^2 + x - 12.......and 4(-3) = -12, -3 + 4 = 1....and the factors are correct


5 0
4 years ago
Read 2 more answers
I have a right angle showing 1/6 how do I figure out what the rest of it equates to
alexgriva [62]
I would think of it as this but i could be wrong.
A right angle is 90 degrees and if you put 1/6 into a decimal it would be 6.
90-6<span>=84 
so 84 degrees is missing of the right angle.</span>
7 0
3 years ago
Read 2 more answers
If the endpoints of the diameter of a circle are (−8, −6) and (−4, −14), what is the standard form equation of the circle?
kondaur [170]

Equation of the circle is (x+6)^{2}+(y+10)^{2}=20.

Solution:

The endpoints of the diameter of a circle are (–8, –6) and (–4, –14).

Center of the circle = Mid point of the diameter

Mid point formula:

$P(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)

Here, x_1=-8, y_1=-6, x_2=-4, y_2=-14

$P(x, y) =\left(\frac{-8-4}{2}, \frac{-6-14}{2}\right)

$P(x, y) =\left(\frac{-12}{2}, \frac{-20}{2}\right)

$P(x, y) =(-6, -10)

Center of the circle = (–6, –10)

Radius is the distance between center and any endpoint of the diameter.

To calculate the radius using distance formula.

r=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Here, x_1=-6, y_1=-10, x_2=-8, y_2=-6

r=\sqrt{\left(-8-(-6)\right)^{2}+\left(-6-(-10)}\right)^{2}}

r=\sqrt{(-8+6)^{2}+(-6+10)^{2}}

r=\sqrt{(-2)^{2}+(4)^{2}}

r=\sqrt{20} units

The standard form of the equation of a circle is

(x-a)^{2}+(y-b)^{2}=r^{2}, where (a, b) are center and r is the radius.

Here, center = (–6, –10) and r=\sqrt{20}

(x-(-6))^{2}+(y-(-10))^{2}={(\sqrt{20})} ^{2}

(x+6)^{2}+(y+10)^{2}=20

Equation of the circle is (x+6)^{2}+(y+10)^{2}=20.

4 0
3 years ago
Find the surface area of the cube shown below. A. 66 cm2 B. 121 cm2 C. 726 cm2 D. 1,331 cm2
irina [24]

Answer:

66

Step-by-step explanation:

3 0
2 years ago
Which statement is false?
Karolina [17]

Answer:

D is the correct answer

Step-by-step explanation:

Not all rectangles are squares.

4 0
3 years ago
Read 2 more answers
Other questions:
  • ²³·∑⊂⇒⇔∈∫⇄ my teacher told me to anser this plz help
    14·1 answer
  • Determine whether the sides given would form an acute, obtuse, or right triangle.<br><br> 9, 7, 15
    5·1 answer
  • If you can help,please answer :)​
    9·1 answer
  • Solve -x^2 + 4x +10 = 0 by using the "Solving the square method"
    14·1 answer
  • What’s the correct answer for this question?
    14·1 answer
  • The table shows values for a quadratic function.
    12·1 answer
  • The graph represents the linear relationship between the number of books Layla has read and the number of months she has been a
    8·2 answers
  • Calculate the slope of the line that passes through the points (-4, -3) and (1,2)
    12·1 answer
  • Which one (it’s a test a and it’s due tonight I need help)
    6·1 answer
  • Paul finished his 800 meter race in 2 minutes and 2 seconds. Jeff finished in 121 seconds. Who finished first? (PLESES SHOW WORK
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!