1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
2 years ago
15

Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​

Mathematics
1 answer:
Gwar [14]2 years ago
5 0

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

You might be interested in
HELP I NEED HELP ASAP HELP I NEED HELP ASAP HELP I NEED HELP ASAP HELP I NEED HELP ASAP
aliina [53]
C
explanation:
6(1)-39=-33
6(2)-39=-27
8 0
3 years ago
Which one of the following statements is true of perpendicular lines?
miv72 [106K]
A. Thay intersect at one point.
5 0
3 years ago
Change the following fractions into mixed numbers
Travka [436]
A) 23/8 divide 23 by 8 to get 2 with remainder 7 therefore 2 7/8
work all by treating each fraction as a division problem and placing the remainder over the divisor 
b) 14/3 = 4 2/3
c) 19/11 = 1 8/11
d) 8/7 = 1 1/7
e) 17/9 = 1 8/9
f) 27/8 = 3 3/8
g) 35/5 = 11 2/3
h) 9/4 = 2 1/4


6 0
3 years ago
HELP which is an equation of the line through (0,0) and (9,-4)
Lesechka [4]

Answer:

Ccccccccccccccccccccc

3 0
3 years ago
Please help me with this
zhannawk [14.2K]
I’m pretty sure it’s 82
6 0
2 years ago
Other questions:
  • What is the 6th square number
    15·1 answer
  • 0.38 is ten times as much as
    6·1 answer
  • Please help
    9·1 answer
  • State if each graph is continuous or discrete. then State whether it is a function​
    15·1 answer
  • A test consists of 10 true/false questions. To pass the test a student must answer at least 6 questions correctly. If a student
    8·1 answer
  • What’s the correct solution to 2x^2+8x=x^2-16
    8·1 answer
  • ILL GIVE BRAINLIST ON WHOEVER GETS IT RIGHT
    14·1 answer
  • A florist delivers flowers to anywhere in town. D is the distance from the delivery address to the florist shop in miles. The co
    6·2 answers
  • -2x -3 =5 what dose x = to
    10·2 answers
  • Help me plsss it’s due in five minuted
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!