1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
2 years ago
15

Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​

Mathematics
1 answer:
Gwar [14]2 years ago
5 0

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

You might be interested in
Zane buys a standard class train ticket.
GaryK [48]

Step-by-step explanation:

15 / 100 × 34

5.1 price he save

6 0
2 years ago
Read 2 more answers
PLEASE HELP
adell [148]
We know that
in a right triangle
Applying the Pythagoras Theorem
c²=a²+b²

in this problem
c=√87 yd
a=√23 yd
b=?
so
b²=c²-a²-----> b²=(√87)²-(√23)²----> b²=87-23----> b²=64----> b=8 yd

the answer is
8 yd
4 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=108cm%20%7B%3F%7D%5E%7B2%7D%20" id="TexFormula1" title="108cm {?}^{2} " alt="108cm {?}^{2} " a
scoundrel [369]
A(base)=6*6=36
A( triangle)=1/2*(base of the triangle)*height( of the triangle)=1/2*6*4=12
one base +4 triangles=36+4*12=36+48 =84 cm²
8 0
3 years ago
Find the area of the figure!!! Pleaseee don’t give a big explain Atom i have exactly 17 minutes to get to 90 on ixl!
prohojiy [21]

Answer:

137 m²

Formula's:

  • area of rectangle: length + width
  • area of triangle: 1/2 * base * height

Explanation:

⇒ area of rec + area of rec + area of rec + area of triangle

⇒ 2 * 4 + 7 * 6 + 8 * 9 + 1/2 * 6 * 5

⇒ 8 + 42 + 72  + 15

⇒ 137 m²

3 0
2 years ago
Read 2 more answers
Pls help best answer will get brainiest
agasfer [191]

Answer:

Point A and point B have 11 units between

Step-by-step explanation:

If the distance between 0 and 10 is 10 also known as the absolute value, you just add one more unit because it starts at -1

So 10 + 1 = 11 and because we are using 10 is greater than 1 its positive so the answer is 11

Hope this helps :)

8 0
3 years ago
Other questions:
  • Set up, but do not evaluate, the integral that represents the length of the curve given by x = 1 + 3t^2, y = 4 + 2t^3 over the i
    15·1 answer
  • Being timed help
    14·1 answer
  • What is the result of subtracting the second equation from the first -2x+7y=10 3x+7y=2
    7·1 answer
  • Im drowning. pls help. ​
    14·1 answer
  • Need help with this plz
    11·1 answer
  • Evaluate the following expression. Round your answer two decimal places. Log3(10)
    11·2 answers
  • • The first customer paid $12 for 14 postcards and 5 large envelopes.
    8·1 answer
  • PPPPPLLLLLLZZZZZZZ HEEEELLP
    5·1 answer
  • I Need Help Please And Thank You
    10·1 answer
  • Can anyone plz help me out with this?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!