Answer: (12) ∠1 = 20° (13) ∠2 = 50° (14) ∠3 = 15° (15) UV = 80° (16) AB = 40° (17) ABC <em>or</em> 180° - CD (18) BC - 140° (19) ABC = 150°
<u>Step-by-step explanation:</u>
12)
(UV - ST) = ∠1
(80 - 40) = ∠1
(40) = ∠1
20 = ∠1
13)
(UV + ST) = ∠2
(70 + 30) = ∠2
(100) = ∠2
50 = ∠2
14)
(VB - BS) = ∠3
(60 - 30) = ∠3
(30) = ∠3
15 = ∠3
15)
(UV - ST) = ∠1
(UV - 20) = 30
UV - 20 = 60
UV = 80
16) ∠1 = arc AB
∠1 = 40
arc AB = 40
17) arc AB + arc BC = arc AC
= 180 = arc CD
18) ∠1 + ∠2 + ∠3 = 180
20 + ∠2 + 20 = 180
∠2 + 40 = 180
∠2 = 140
19) ∠1 + ∠ 2 = arc ABC
∠1 + ∠2 + ∠3 = 180
arc ABC + 30 = 180
arc ABC = 150
n, n + 2, n + 4, n + 6 - four consecutive odd integers
-72 - the sum
The equation:
n + (n + 2) + (n + 4) + (n + 6) = -72
n + n + 2 + n + 4 + n + 6 = -72
4n + 12 = -72 |subtract 12 from both sides
4n = -84 |divide both sides by 4
n = -21
n + 2 = -21 + 2 = -19
n + 4 = -21 + 4 = -17
n + 6 = -21 + 6 = -15
Answer: -21, -19, -17, -15.
How far does a wheel move when it rotates once? The length of the outside of the tyre? Isn't that the same as the circumference?
Answer:
Divide X^2-14x+45 by x-9
Step-by-step explanation:
im just trying to get free points