Using probability concepts, it is found that:
a)
probability of drawing a card below a 6.
b)
odds of drawing a card below a 6.
c) We should expect to draw a card below 6 about 4 times out of 13 attempts, which as an odd, it also 4 times for every 9 times we draw a card above 6, which is the third option.
------------------------------
- A probability is the <u>number of desired outcomes divided by the number of total outcomes</u>.
Item a:
- In a standard deck, there are 52 cards.
- There are 4 types of cards, each numbered 1 to 13. Thus,
are less than 6.
Then:

probability of drawing a card below a 6.
Item b:
- Converting from probability to odd, it is:

odds of drawing a card below a 6.
Item c:
- The law of large numbers states that with a <u>large number of trials, the percentage of each outcome is close to it's theoretical probability.</u>
- Thus, we should expect to draw a card below 6 about 4 times out of 13 attempts, which as an odd, it also 4 times for every 9 times we draw a card above 6, which is the third option.
A similar problem is given at brainly.com/question/24233657
Answer:
{F, O, U, R} in the word 'FOUR'
Answer:
Step-by-step explanation:
<h2><u>Problem Solving</u>:-</h2>
2. The table below shows that the distance d varies directly as the time t. Find the constant of variation and the equation which describes the relation.
<h2><u>Solution</u>:-</h2>
Since the distance d varies directly as the time t, then d = kt.
Using one of the pairs of values, (2, 20), from the table, substitute the values of d and t in d = kt and solve for k.




<h2><u>Answer</u>:-</h2>
- Therefore, the constant of variation is 10.
Answer:
128, -256, -1024
Step-by-step explanation:
multiply 32 by 4, multiply 128 by -2, multiply -256 by 4