Answer:
Option B
Step-by-step explanation:
When two intersecting lines cut each other they form four angles. these two pair of angles are called opposite angles or vertical angles. The vertical angles formed by two intersecting segments are equal.
Thus option B is correct: The vertical Angles Formed By Two Intersecting Segments Are Congruent !
Answer:
yes
Step-by-step explanation:
First step: you have to plug in 6y+3 into the equation and solve
Example: 6y+3+2y = 5
Let

be the random variable indicating whether the elevator does not stop at floor

, with

Let

be the random variable representing the number of floors at which the elevator does not stop. Then

We want to find

. By definition,
![\mathrm{Var}(Y)=\mathbb E[(Y-\mathbb E[Y])^2]=\mathbb E[Y^2]-\mathbb E[Y]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%28Y%29%3D%5Cmathbb%20E%5B%28Y-%5Cmathbb%20E%5BY%5D%29%5E2%5D%3D%5Cmathbb%20E%5BY%5E2%5D-%5Cmathbb%20E%5BY%5D%5E2)
As stated in the question, there is a

probability that any one person will get off at floor

(here,

refers to any of the

total floors, not just the top floor). Then the probability that a person will not get off at floor

is

. There are

people in the elevator, so the probability that not a single one gets off at floor

is

.
So,

which means
![\mathbb E[Y]=\mathbb E\left[\displaystyle\sum_{i=1}^nX_i\right]=\displaystyle\sum_{i=1}^n\mathbb E[X_i]=\sum_{i=1}^n\left(1\cdot\left(1-\dfrac1n\right)^m+0\cdot\left(1-\left(1-\dfrac1n\right)^m\right)](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BY%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5EnX_i%5Cright%5D%3D%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%5Cmathbb%20E%5BX_i%5D%3D%5Csum_%7Bi%3D1%7D%5En%5Cleft%281%5Ccdot%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em%2B0%5Ccdot%5Cleft%281-%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em%5Cright%29)
![\implies\mathbb E[Y]=n\left(1-\dfrac1n\right)^m](https://tex.z-dn.net/?f=%5Cimplies%5Cmathbb%20E%5BY%5D%3Dn%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em)
and
![\mathbb E[Y^2]=\mathbb E\left[\left(\displaystyle\sum_{i=1}^n{X_i}\right)^2\right]=\mathbb E\left[\displaystyle\sum_{i=1}^n{X_i}^2+2\sum_{1\le i](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BY%5E2%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cleft%28%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%7BX_i%7D%5Cright%29%5E2%5Cright%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%7BX_i%7D%5E2%2B2%5Csum_%7B1%5Cle%20i%3Cj%7DX_iX_j%5Cright%5D%3D%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%5Cmathbb%20E%5B%7BX_i%7D%5E2%5D%2B2%5Csum_%7B1%5Cle%20i%3Cj%7D%5Cmathbb%20E%5BX_iX_j%5D)
Computing
![\mathbb E[{X_i}^2]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5B%7BX_i%7D%5E2%5D)
is trivial since it's the same as
![\mathbb E[X_i]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BX_i%5D)
. (Do you see why?)
Next, we want to find the expected value of the following random variable, when

:

If

, we don't care; when we compute
![\mathbb E[X_iX_j]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BX_iX_j%5D)
, the contributing terms will vanish. We only want to see what happens when both floors are not visited.

![\implies\mathbb E[X_iX_j]=\left(1-\dfrac2n\right)^m](https://tex.z-dn.net/?f=%5Cimplies%5Cmathbb%20E%5BX_iX_j%5D%3D%5Cleft%281-%5Cdfrac2n%5Cright%29%5Em)

where we multiply by

because that's how many ways there are of choosing indices

for

such that

.
So,
Answer:
A
Step-by-step explanation:
0<y<100