The sum of internal angles of a triangle is 180°, so:
3x+2x+50+x+46=180
6x=84
x=14
angle a = 3*14=42
angle b = 2*14+50=78
angle c = 14+46=60
<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>
The answer is x=5/8. The reason for this is when you divide it equal 0.625 then when you multiply that by 2 it equals 1.25. After you do that you add 5 which is 6.25. Now we divide 4/5 which is 0.8. Now, we multiply 6.25x0.8=5. 5-4=1. Therefore your answer is 5/8. Hope this helps :)
Answer:
1st one a^-1 , 2nd one a^b/a^c , 3rd one a^c/b^c