I would tell her not to because not only does she have to pay back the 1000 but now she also has to pay back the interest on it. She should just wait or save up until she has 1000 that way she dont gotta pay extra.
Answer:

Step-by-step explanation:
The y intercept form for the equation of a line is

You should note that <em>c</em> represents the y-intercept of the line (where the line touches the y-axis)

Answer:
i think 3+10=13 is the open statement
let's notice something, the parabola is a vertical one, so the squared variable is the x, and is opening downwards, meaning the x² will have a negative coefficient.
the distance from the vertex to the directrix/focus is the amount of "p" units, let's see in the graph, the distance from the vertex to the directrix is 2, and since the parabola is opening downwards, "p" is a negative 2, p = -2. The vertex is of course at (0, 2).
![\bf \textit{parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=0\\ k=2\\ p=-2 \end{cases}\implies 4(-2)(y-2)=(x-0)^2\implies -8(y-2)=x^2 \\\\\\ y-2=\cfrac{x^2}{-8}\implies \blacktriangleright y=-\cfrac{1}{8}x^2+2 \blacktriangleleft](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%0A%5C%5C%5C%5C%0A4p%28y-%20k%29%3D%28x-%20h%29%5E2%0A%5Cqquad%0A%5Cbegin%7Barray%7D%7Bllll%7D%0Avertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%0A%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ah%3D0%5C%5C%0Ak%3D2%5C%5C%0Ap%3D-2%0A%5Cend%7Bcases%7D%5Cimplies%204%28-2%29%28y-2%29%3D%28x-0%29%5E2%5Cimplies%20-8%28y-2%29%3Dx%5E2%0A%5C%5C%5C%5C%5C%5C%0Ay-2%3D%5Ccfrac%7Bx%5E2%7D%7B-8%7D%5Cimplies%20%5Cblacktriangleright%20y%3D-%5Ccfrac%7B1%7D%7B8%7Dx%5E2%2B2%20%5Cblacktriangleleft%20)
Answer:
The same ratio indicates that there is a proportional relationship between y and x.
Step-by-step explanation:
We know when y varies directly with x, the equation is
y ∝ x


Here,
k is the constant of proportionality.
The ratio y/x indicates that k is a constant of proportionality.
Thus, the same ratio indicates that there is a proportional relationship between y and x.
When x increases, y increases, and when y decreases, x also decreases.