Answer:

Step-by-step explanation:
2)
a) elimination method
b) substitution method
c) substitution method
For the first part we can elimate the y variable by subtracting the equations. We can then find the value of x.
For the second part we can substitute y as 2x+5 in the second equation and solve for x.
For the third part we can substitute y as 4x+3 in the first equation and solve for x.
3)

<span>Let a_0 = 100, the first payment. Every subsequent payment is the prior payment, times 1.1. In order to represent that, let a_n be the term in question. The term before it is a_n-1. So a_n = 1.1 * a_n-1. This means that a_19 = 1.1*a_18, a_18 = 1.1*a_17, etc. To find the sum of your first 20 payments, this sum is equal to a_0+a_1+a_2+...+a_19. a_1 = 1.1*a_0, so a_2 = 1.1*(1.1*a_0) = (1.1)^2 * a_0, a_3 = 1.1*a_2 = (1.1)^3*a_3, and so on. So the sum can be reduced to S = a_0 * (1+ 1.1 + 1.1^2 + 1.1^3 + ... + 1.1^19) which is approximately $5727.50</span>
Answer:
<em>The SUV is running at 70 km/h</em>
Step-by-step explanation:
<u>Speed As Rate Of Change
</u>
The speed can be understood as the rate of change of the distance in time. When the distance increases with time, the speed is positive and vice-versa. The instantaneous rate of change of the distance allows us to find the speed as a function of time.
This is the situation. A police car is 0.6 Km above the intersection and is approaching it at 60 km/h. Since the distance is decreasing, this speed is negative. On the other side, the SUV is 0.8 km east of intersection running from the police. The distance is increasing, so the speed should be positive. The distance traveled by the police car (y) and the distance traveled by the SUV (x) form a right triangle whose hypotenuse is the distance between them (d). We have:

To find the instant speeds, we need to compute the derivative of d respect to the time (t). Since d,x, and y depend on time, we apply the chain rule as follows:

Where x' is the speed of the SUV and y' is the speed of the police car (y'=-60 km/h)
We'll compute :


We know d'=20 km/h, so we can solve for x' and find the speed of the SUV

Thus we have

Solving for x'

Since y'=-60


The SUV is running at 70 km/h
1. B
2. A
3. D
4. D
I'm not too sure about 1 but I'm sure about the others. Hope this helps!