1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sphinxa [80]
2 years ago
7

Please help its due soon ill give brainlest

Mathematics
1 answer:
lara31 [8.8K]2 years ago
4 0

Answer:

r ≈ 7.80 yd

Step-by-step explanation:

The circumference (C) of a circle is calculated as

C = 2πr ( r is the radius )

Here C = 49 , then

2πr = 49 ( divide both sides by 2π )

r = \frac{49}{2\pi } ≈ 7.80 yd ( to the nearest hundredth )

You might be interested in
If someone could help that'd be cool
alukav5142 [94]

Answer:

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
PLEASE HELP IM BEGGING Ira B. Scholar, that bizarre math teacher, put the figure at right on a recent test and said,
rewona [7]

Answer:

The perimeter is the distance all the way around the outside of a 2D shape.  To calculate the perimeter, sum the lengths of all the sides.

Therefore, perimeter of the triangle = (2x - 8) + (2x + 5) + (30 - 3x)

Collect like terms:  2x + 2x - 3x - 8 + 5 + 30

Combine like terms:  x + 27

Therefore, perimeter of triangle = x + 27

We are told that the perimeter is 25:

x + 27 = 25

Subtract 27 from both sides: x = -2

If x = -2, then the side with equation 2x - 8 = (2 x -2) - 8 = -12

A length cannot be negative, therefore the perimeter cannot equal 25.

7 0
2 years ago
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Write the equation of the circle with center (−3, −2) and (4, 5) a point on the circle.
SSSSS [86.1K]
Your answer should be B
5 0
3 years ago
Read 2 more answers
a motorboat travels 305km in 5 hours going upstream and 651km in 7 hours going downstream. What is the rate of the boat in still
Ghella [55]
Recall your d = rt, distance = rate * time.

b = speed rate of the boat.

c = speed rate of the current.


keeping in mind that, as the boat goes Upstream, against the current, it's speed is not "b", but is really " b - c ", because the current is subtracting speed from it.

likewise, when the boat is going Downstream, because is going with the current, is really going faster at " b + c ".

\bf \begin{array}{lccclll}&#10;&\stackrel{km}{distance}&\stackrel{kmh}{rate}&\stackrel{hours}{time}\\&#10;&------&------&------\\&#10;Upstream&305&b-c&5\\&#10;Downstream&651&b+c&7&#10;\end{array}&#10;\\\\\\&#10;\begin{cases}&#10;305=(b-c)(5)\implies 61=b-c\implies 61+c=\boxed{b}\\&#10;651=(b+c)(7)\implies 93=b+c\\&#10;----------------------\\&#10;93=\boxed{61+c}+c&#10;\end{cases}&#10;\\\\\\&#10;93=61+2c\implies 32=2c\implies \cfrac{32}{2}=c\implies 16=c

what is the speed of the boat?  well, 61 + c = b.
6 0
3 years ago
Other questions:
  • Select the correct answer.
    14·1 answer
  • Find the volume of the triangular prism.
    6·2 answers
  • Let f(x) = x to the second power − 8x + 5. Find f(−1).
    13·1 answer
  • Over five different weeks, Irina tracked the hours she
    15·2 answers
  • Write the equation of the line in either point-slope form or slope-intercept form.
    7·2 answers
  • Algebra 2 please help
    9·1 answer
  • How many significant digits should the product of 11,435 meters and 19.35 meters have?
    6·1 answer
  • Find the domain of<br><br><br><br> f(x)={-4x if x ≤ 0<br> { 4x+2 if &gt; 0
    14·1 answer
  • HW HELP ASAP PLZZZZZ
    9·1 answer
  • Determine if the three side lengths given can create a triangle or not. Prove it by working out the inequality.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!