Functions cannot have the same X value (the first number), but they can have the same Y value (the second number).
<span>A. {(1,2),(2,3),(3,4),(2,1),(1,0)}
B. {(2,−8),(6,4),(−3,9),(2,0),(−5,3)}
C. {(1,−3),(1,−1),(1,1),(1,3),(1,5)}
D. {(−2,5),(7,5),(−4,0),(3,1),(0,−6)}
Choice A. has two repeating X values [(1,2) and (1,0), (2,3) and (2,1)]
Choice B. has one repeating X value [(2, -8) and (2,0)]
Choice C. all has a repeating X value (1)
Choice D doesn't have any repeating X values.
In short, your answer would be choice D [</span><span>{(−2,5),(7,5),(−4,0),(3,1),(0,−6)}] because it does not have any repeating X values.</span>
Answer:
B) -3/2
Step-by-step explanation:
If [x/2]=0 then x/2 is a number such that the least integer greater than or equal to x/2 is 0. We can rewrite this as the inequality x/2≤0. Then, the value of x in C, D and E is wrong because they are positive numbers, then x/2 would be a positive number which contradicts this inequality.
Now, 0 is the least integer that satisfies this inequality, therefore we cannot have that x/2≤-1 since -1 is an integer and -1<0. Then x/2>-1. This discards A as wrong, because for x=-2, x/2=-1, contrary to x/2>-1.
Thus B is the right answer. To verify, if x=-3/2, then x/2=-3/4 and we have that -1<-3/4≤0 as required.