Answer: The central limit theorem tells us that when random samples are chosen the results tend to approach a normal distribution.
The basic idea is that the more random samples that you select, the closer you should get to the mean. In most cases, 30 or more samples is regarded as a large enough sample to get close to the mean. Our sample is 48, so we should be close to the mean.
Answer:
61.93
Step-by-step explanation:
use cosine x= 8/17
The square of a whole number n lies between 80 and 150, so n lies between √80 and √150.

n is a whole number and lies between 8.9 and 12.2, so n can be 9, 10, 11, or 12.
The possible values for n are 9, 10, 11, and 12.
30in I know that because I just did this .this is EASY!
Answer:
17.5% per annum
Step-by-step explanation:
<u>Given:</u>
Money invested = $20,000 at the age of 20 years.
Money expected to be $500,000 at the age of 40.
Time = 40 - 20 = 20 years
<em>Interest is compounded annually.</em>
<u>To find:</u>
Rate of growth = ?
<u>Solution:</u>
First of all, let us have a look at the formula for compound interest.

Where A is the amount after T years compounding at a rate of R% per annum. P is the principal amount.
Here, We are given:
P = $20,000
A = $500,000
T = 20 years
R = ?
Putting all the values in the formula:
![500000 = 20000 \times (1+\frac{R}{100})^{20}\\\Rightarrow \dfrac{500000}{20000} =(1+\frac{R}{100})^{20}\\\Rightarrow 25 =(1+\frac{R}{100})^{20}\\\Rightarrow \sqrt[20]{25} =1+\frac{R}{100}\\\Rightarrow 1.175 = 1+0.01R\\\Rightarrow R \approx17.5\%](https://tex.z-dn.net/?f=500000%20%3D%2020000%20%5Ctimes%20%281%2B%5Cfrac%7BR%7D%7B100%7D%29%5E%7B20%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B500000%7D%7B20000%7D%20%3D%281%2B%5Cfrac%7BR%7D%7B100%7D%29%5E%7B20%7D%5C%5C%5CRightarrow%2025%20%3D%281%2B%5Cfrac%7BR%7D%7B100%7D%29%5E%7B20%7D%5C%5C%5CRightarrow%20%5Csqrt%5B20%5D%7B25%7D%20%3D1%2B%5Cfrac%7BR%7D%7B100%7D%5C%5C%5CRightarrow%201.175%20%3D%201%2B0.01R%5C%5C%5CRightarrow%20R%20%5Capprox17.5%5C%25)
So, the correct answer is
<em>17.5% </em>per annum and compounding annually.