40/40
8x5=40
10x4=40
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
168 students because 28% of 600 is 168.
Answer:
First number = 4
Second number = 9
Step-by-step explanation:
If the first number = x, the second number = x + 5.
The calculation can be expressed as follows:
x + 2(x + 5) = 22
First, expand the bracket 2(x + 5):
x + 2x + 10 = 22
Combine like terms:
3x + 10 = 22
Subtract 10 from both sides:
3x = 12
Divide both sides by 3:
x = 4
First number = 4
Second number = 4 + 5 = 9
The question is incomplete. The complete question is :
Jaina and Tomas compare their compound interest accounts to see how much they will have in the accounts after three years. They substitute their values shown below into the compound interest formula. Compound Interest Accounts Name Principal Interest Rate Number of Years Compounded Jaina $300 7% 3 Once a year Tomas $400 4% 3 Once a year. Which pair of equations would correctly calculate their compound interests?
Solution :
It is given that Jaina and Tomas wants to open an account by depositing a principal amount for a period of 3 years and wanted to calculate the amount they will have using the compound interest formula.
<u>So for Jiana</u> :
Principal, P = $300
Rate of interest, r = 7%
Time, t = 3
Compounded yearly
Therefore, using compound interest formula, we get



<u>Now for Tomas </u>:
Principal, P = $400
Rate of interest, r = 4%
Time, t = 3
Compounded yearly
Therefore, using compound interest formula, we get



Therefore, the pair of equations that would correctly calculate the compound interests for Jaina is
.
And the pair of equations that would correctly calculate the compound interests for Tomas is
.
Answer:

Step-by-step explanation:
We want to calculate the right-endpoint approximation (the right Riemann sum) for the function:

On the interval [-1, 1] using five equal rectangles.
Find the width of each rectangle:

List the <em>x-</em>coordinates starting with -1 and ending with 1 with increments of 2/5:
-1, -3/5, -1/5, 1/5, 3/5, 1.
Since we are find the right-hand approximation, we use the five coordinates on the right.
Evaluate the function for each value. This is shown in the table below.
Each area of each rectangle is its area (the <em>y-</em>value) times its width, which is a constant 2/5. Hence, the approximation for the area under the curve of the function <em>f(x)</em> over the interval [-1, 1] using five equal rectangles is:
