I can think of two possible and logical questions for the problem given. First, you can calculate for the maximum height reached by the blue ball. Second, you can compute the length of time for the two balls to be at the same height. If so, the solution are as follows:
When the object is thrown upwards or when the object is dropped from a height, the only force acting upon it is the gravitational force. Because of this, it simplifies equations of motion.
1. For the maximum height, the equation is
H = v₀²/2g
where
v₀ is the initial speed
g is the acceleration due to gravity equal to 9.81 m/s²
For the blue ball, v₀ = 21.8 m/s. Substituting the values:
H = (21.8 m/s)²/2(9.81m/s²)
H = 24.22 m
The maximum height reached by the blue ball is 24.22 m + 0.9 = 25.12 m.
2. For this, you equate the y values of both balls:
y for red ball = y for blue ball
v₀t + 0.5gt² = v₀t + 0.5gt²
(10.4 m/s)t + 0.5(9.81 m/s²)(t²) + 26.6 m = (21.8 m/s)t + 0.5(9.81 m/s²)(t²) + 0.9 m
Solving for t,
t = 2.25 seconds
Thus, the two balls would be at the same height after 2.25 seconds.
During the "U" part of the turn, the car would follow an approximately circular path, and if it's moving at a constant speed, it would have to accelerate toward the center of the circle in order to change its direction.
Its a major factor in the food chain the grass hopers could be gone and some other animals and insects would die from starving and it would mess up the entire food chain for that area hope this helps had the same free response for k12 plz give me brainliest thx
Answer:
Sorry don't know the answer