Answer:
Surely Achilles will catch the Tortoise, in 400 seconds
Explanation:
The problem itself reduces the interval of time many times, almost reaching zero. However, if we assume the interval constant, then it is clear that in two hours Achilles already has surpassed the Tortoise (20 miles while the Tortoise only 3).
To calculate the time, we use kinematic expression for constant speed:

The moment that Achilles catch the tortoise is found by setting the same final position for both (and same time as well, since both start at the same time):

Answer:
High pressure inside the giant planet
Explanation:
As we move in the interior of the giant planet, the pressure and temperature in the interior of the planet increases. Since, the giant planets have hardly any solid surface and thus they are mostly constituted of atmosphere.
Also, the gravitational forces keep even the lightest of the matter bound in it contributing to the large mass of the planet.
If we look at the order of the magnitude of the temperature of these giant planets than nothing should be able to stay in liquid form but as the depth of the planet increases with the increase in temperature, pressure also increases which keeps the particle of the matter in compressed form.
Thus even at such high order of magnitude water is still found in liquid state in the interior of the planet.
Self productive and it depends on how whom is behaving.
Sippen lein an hr later is theanswer to both
The gravitational constant was experimentally measured by W Cavendish using the attraction between big and small lead balls. is true
The correct answer is true
<h3>How do you define gravitational constant?</h3>
the strength of gravity. a factor in use in Newton's gravity law to relate the strength of the gravitational pull between two bodies with their masses and distance from one another. 6.67259 X 10-11 newtons per square kilogram is roughly the gravitational constant. G is its identifier.
<h3> where is the strongest gravity is?</h3>
The gravitational pull of the earth is greatest near sea level, normally, and weakens as you get further from the center, such as to the summit of Mt. Everest. Because the obloid earth was slightly wider, but only by a minor ratio, the gravity just at poles is stronger than that at the equator.
To know more about gravitational constant visit:
brainly.com/question/858421
#SPJ9