5.6 is 5.63 rounded to the nearest tenth
Answer:
A. 2x, -4y, and 8
Step-by-step explanation:
If there is a minus sign in front of the 4 (-), add that to the expression. What you are just simply doing is separating the numbers up. For example:
12x - 8y + 4x
Now here, you have two of the same variables (x, y, etc). So, what you do is look at the last number that has the same variables, which is 4, and look at what the problem you will be solving, which is addition. So, very simply, you add then together!
12× + 4× = 16×
As you can see I kept the same variable. This is because, well, it is the same! Simply, just substitute in the 16× with the 8y. Now here is the tricky part, for some people. Do you see that there is a negative sign in front of the 8 (-)? Well! You have to substitute that in with the expression. No adding this or anything, just simply slide it next to the 16× because, we can not add nor subtract it with the 8y just because it has a different variable.
Your example answer would be: 16× - 8y
Hope this helps!
P.S. if you think this helped you at all, Brainliest me if ya want to. Have a great day!
A = event the person got the class they wanted
B = event the person is on the honor roll
P(A) = (number who got the class they wanted)/(number total)
P(A) = 379/500
P(A) = 0.758
There's a 75.8% chance someone will get the class they want
Let's see if being on the honor roll changes the probability we just found
So we want to compute P(A | B). If it is equal to P(A), then being on the honor roll does not change P(A).
---------------
A and B = someone got the class they want and they're on the honor roll
P(A and B) = 64/500
P(A and B) = 0.128
P(B) = 144/500
P(B) = 0.288
P(A | B) = P(A and B)/P(B)
P(A | B) = 0.128/0.288
P(A | B) = 0.44 approximately
This is what you have shown in your steps. This means if we know the person is on the honor roll, then they have a 44% chance of getting the class they want.
Those on the honor roll are at a disadvantage to getting their requested class. Perhaps the thinking is that the honor roll students can handle harder or less popular teachers.
Regardless of motivations, being on the honor roll changes the probability of getting the class you want. So Alex is correct in thinking the honor roll students have a disadvantage. Everything would be fair if P(A | B) = P(A) showing that events A and B are independent. That is not the case here so the events are linked somehow.
34,272 is the answer
you have to estimate it is easy