1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
1 year ago
5

For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso

ns approximation. Evaluate all trig functions, leave your answers with radicals when needed.

Mathematics
1 answer:
PIT_PIT [208]1 year ago
6 0

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

You might be interested in
Mathematicians 4: Who is Who?
larisa86 [58]

Answer:

a. x = -9 or x = -2

b. -5(x - 4)

c. x = -3 or x = 5

d. x = ±7

Step-by-step explanation:

a. First person;

y = x² + 11x + 18

y = x² + 9x + 2x + 18

y = x(x + 9) + 2(x + 9)

y = (x + 9)(x + 2)

y = x = -9 or x = -2

b. Second person;

y = -5x + 20

The common factor is 5.

y = -5(x - 4)

c. Third person;

y = x² - 2x - 15

y = x² - 5x + 3x - 15

y = x(x - 5) + 3(x - 5)

y = (x + 3)(x - 5)

y = x = -3 or x = 5

d. Fourth person;

y = x² - 49

Applying the difference of squares formula;

(a² - b²) = (a - b)(a + b)

y = x² - 49 = x² - 7² = (x - 7)(x + 7)

y = (x - 7)(x + 7)

y = x = ±7

6 0
2 years ago
In the diagram, which two angles are corresponding angles with angle 12?
Rama09 [41]

Answer:

It's 8 the answer is 8

Step-by-step explanation:

6 0
3 years ago
This isn’t too difficult of questions and I am pretty sure I know the answers but I just want to make sure. Can someone please h
Shkiper50 [21]
Q2 Anwser
Exact Form:
28/15
Decimal Form:
1.86
Mixed Number Form:
1 13/15
5 0
3 years ago
Question 11 of 11 The 6 students in Mrs. Baker's class were asked how many minutes it takes them to get to school in the morning
Yuki888 [10]

Answer:

Mean=8.8, Median=8

Step-by-step explanation:

How to find the mean:

First, add all the #'s up. 4+9+12+14+7+7=53

Then divide that by the number or numbers. In this case it is 6.

53/6=8.833... So rounded=8.8

Median:

List numbers lowest to highest

4, 7, 7, 9, 12, 14

Go to the middle number.

Since it is between 7 and 9, it is 7+9=16. 16/2=8

8 is the median

8 0
2 years ago
Answer choices<br> A. 23<br> B. 25<br> C. 35<br> D. 50
Tasya [4]
35? I’m not sure what the question is asking
3 0
3 years ago
Read 2 more answers
Other questions:
  • The supplement of an angle is 126ْ more than twice its complement. The measure of the angle is:
    5·2 answers
  • Can some one plz Solve this. 5 - 2x &lt; 7.
    8·2 answers
  • Where does the oxygen that is used during cellular respiration in animals
    15·1 answer
  • A polynomial function is given.
    12·1 answer
  • A fruit bowl is shaped like half of a sphere. The radius of the bowl is 15cm. what is the volume of the bowl
    5·1 answer
  • The table below represents a function. x 1 2 3 4 5 y 6 12 18 24 30 Which statement would best describe the graph of the function
    8·1 answer
  • Which set of ordered pairs does not represent a function?
    5·1 answer
  • How do I do this? can someone please help me<br>​
    14·2 answers
  • What is the result when 3/8x + 2 1/5 is subtracted from 3 1/2x - 4 1/10?<br><br> Don’t put a link.
    12·2 answers
  • Can someone help me with this ASAP please I’m being timed !
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!