1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
1 year ago
5

For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso

ns approximation. Evaluate all trig functions, leave your answers with radicals when needed.

Mathematics
1 answer:
PIT_PIT [208]1 year ago
6 0

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

You might be interested in
If AB=BC,AB=4=4x-2,andBC=3x+3,fine the length of AB
laila [671]

Answer:

18

Step-by-step explanation:

First, I'm assuming AB=4=4x-2 was a typo and it's supposed to be AB = 4x - 2

AB=BC

AB = 4x - 2 BC = 3x + 3

4x - 2 = 3x + 3

Solve for x Add 2 to each side

4x - 2 = 3x + 3

4x - 2 + 2 = 3x + 3 + 2

4x = 3x + 5 Subtract 3x from each side.

4x - 3x = 3x- 3x + 5

4x - 3x = 5

x = 5

Now plug back in to the original equations

AB = 4x - 2                  BC = 3x + 3

AB = 4 (5) - 2               BC = 3(5) + 3

AB = 20 - 2                  BC = 15 + 3

AB = 18                        BC = 18

So AB is 18

3 0
3 years ago
-3+ 3x (x-7)=-6 (-5+ 4×)
Dennis_Churaev [7]
The answer to this question using the quadratic formula is x= -1+3√5/2 and x=-1-3<span>√5/2
</span>that is a square root, or, 3 times the square root of 5 ALL over 2, except for the 1. Same with the other one.
8 0
3 years ago
Please answer this correctly
ipn [44]

Answer:

1

Step-by-step explanation:

Set the height of the bar to 1 because there is only 1 number between 40-49 i.e. 49

7 0
2 years ago
Simplify. 5y(4x-3z)
Dahasolnce [82]

Answer:

<h2><em>2</em><em>0</em><em>x</em><em>y</em><em>-</em><em>1</em><em>5</em><em>y</em><em>z</em></h2>

<em>Option </em><em>D </em><em>is </em><em>the </em><em>right </em><em>option.</em>

<em>Solution</em><em>,</em>

<em>5y(4x - 3z) \\  = 5y \times 4x - 5y \times 3z \\  = 20xy - 15yz</em>

<em>hope </em><em> </em><em>this </em><em>helps.</em><em>.</em><em>.</em>

<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>

5 0
3 years ago
Read 2 more answers
What is the result when we simplify the expression ( 1 + 1/ x ) ( 1 − 2/ x + 1 ) ( 1 + 2/ x − 1 )
BaLLatris [955]

Answer:

\frac{4(x + 1)(x - 1)}{ {x}^{3} }

Step-by-step explanation:

I have a app called photomath, I really hope this works.

5 0
2 years ago
Other questions:
  • Which linear inequality is graphed with y&gt;-x-2 to create the given solution set?
    11·2 answers
  • You ask to barrow $800 from your Uncle Raul who decides to charge you 25% monthly interest on the initial amount. Does this arra
    9·1 answer
  • 14 thanks you so much
    9·2 answers
  • What is the solution of the system? use substitution. 5x - y =3 6x - y=8
    10·1 answer
  • What is the surface area of the right cone below?
    14·1 answer
  • Translate: The product of 8 and the sum of a number and -4
    10·1 answer
  • 0.817 times 1.5 must show answer
    7·1 answer
  • ?????????????????????
    7·1 answer
  • !NO FILES ! <br> Help me ASAP :((
    9·1 answer
  • Joe mixed 10 ozs of blue paint with 4 oz of white paint. he wants to make a batch using 18 oz of white paint, how much blue pain
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!