1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
2 years ago
5

For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso

ns approximation. Evaluate all trig functions, leave your answers with radicals when needed.

Mathematics
1 answer:
PIT_PIT [208]2 years ago
6 0

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

You might be interested in
You roll a die four times. What is the probability that it will show an even number the first three times, then a one the last t
mezya [45]

A die has six sides so you have a *blank*/6 chance of getting a certain number.

Since there are 3 even numbers on a die and 3 odd numbers. So the probability of rolling a even number would be:

3/6 or 1/2 or 50%

There is a one, one on a die so your chance of rolling a one the last time would be:

1/6 or about 16%

Hope this helps :) If you have any more questions just ask!

3 0
3 years ago
HELP!!
Genrish500 [490]

Answer:

G. 477.75

Step-by-step explanation:

4 0
3 years ago
Sara Poured 3/4 of the juice from a 2-liter bottle while serving guests at a party. How much juice, in liters, is still left in
Tems11 [23]

Answer:

1 1/4 of a liter

Step-by-step explanation:

7 0
3 years ago
SOLVE
Marysya12 [62]

Answer: 1. x can vary by numbers over 13, the third one is 6x-5=18. x is the answer when you solve for it

Step-by-step explanation: 1. x>12-5

3. 6x-5=18

6 0
3 years ago
Given x² - 16x + 4 = 0:
arsen [322]
PART A
General formula of quadratic equation
ax² + bx + c = 0
To find the discriminant of the quadratic equation shown above, use this following formula.
d = \sqrt{b^{2}-4ac}

There is a quadratic equation below
x² - 16x + 4 = 0
therefore
a = 1
b = -16
c = 4

Plug in the numbers to the formula
d = \sqrt{b^{2}-4ac}
d = \sqrt{(-16)^{2}-4(1)(4)}
d = \sqrt{(256-16}
d = \sqrt{240}

Simplify
d = \sqrt{16*15}
d = 4 \sqrt{15}
The value of the discriminant is 4√15

PART B
If the discriminant is less than zero (negative), the quadratic equation has imaginary solution.
If the discriminant is equal to zero, the quadratic equation has only one solution.
If the discriminant is more than zero (positive), the quadratic equation has two real solutions.

Because the discriminant of the quadratic equation is 4√15 and it's positive, <u>the quadratic equation has two real solutions.</u>
4 0
4 years ago
Other questions:
  • Which point do all exponential functions of the form y = ax pass through? A) (0, 1) B) (1, 0) C) (0, 0) D) (−1, 0)
    7·2 answers
  • 2. Find 28% of 158.
    6·2 answers
  • What is an equilateral triangle
    6·2 answers
  • Given: f(x) = xand g(x) = x +1, find g[f(-2)].<br> 1<br> 5<br> -3
    13·2 answers
  • HELP ME ASAP! thank you guys will give brainliest (or whatever)
    11·1 answer
  • Please show your work
    12·1 answer
  • He spends a total of $500.
    6·2 answers
  • 2 triangles are shown. The second triangle is rotated 90 degrees to the right. A point is between both triangles.
    15·2 answers
  • Find the slope and y intercept of 3x-2y=-8
    6·1 answer
  • AB is parallel to CD.<br><br> Determine the value of X.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!