1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
2 years ago
5

For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso

ns approximation. Evaluate all trig functions, leave your answers with radicals when needed.

Mathematics
1 answer:
PIT_PIT [208]2 years ago
6 0

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

You might be interested in
The ratio of the volume of two solids is 1331:729. What is the ratio of the surface area
katovenus [111]
Volume ratio = 1331/729 which is the cube of the linear scale factor.
To find the linear scale factor, let find the cubic root of the numerator & the denominator:

∛1331 = ∛11³  = 11

&  ∛729 = ∛9³  = 9

So the linear scale is 11/9 ==> then the ratio of their surface area will be:

11²/9² ==> 121/81.
Note, if you have a linear scale, then the surface will be the square othis scale & the volume will be the cube of the linear scale
8 0
3 years ago
The local public pool is a rectangle with two semicircles.
Reptile [31]

The area of the surface of the pool is 7322.64 m².

<h3>What is Area of rectangle?</h3>

The area of rectangle is product of length and its breadth.

i.e., length * breadth

Given: Length = 100 m, Width = 52 m and Diameter = 52 m

Area of rectangle,

= 100 × 52

= 5200 m²

Now,

Area of semicircle = 1/2 × πr²

=1/2 × 3.14 × 26²

= 1061.32 m²

Hence, area of the surface of the pool is

= 1061.32 + 1061.32 + 5200

= 7322.64 m²

Learn more about this concept here:

brainly.com/question/15461609

#SPJ1

8 0
2 years ago
The struggle is real...​
ipn [44]
Point Form:
(2, 4), (1, 1)

Equation Form:
x = 2, y = 4
x = 1, y = 1
3 0
3 years ago
Read 2 more answers
If the quotient is 12 and the dividend is 288 what is the divisor
DaniilM [7]
The answer is 19 because you have to divide them
3 0
3 years ago
How would you do this, I am very confused
AfilCa [17]
Triangle has a total of 180 degrees

add up all angles 
A+B+C = 3x+5+4x-2+2x+6=180
9x=171
x=19

Plug x values into the A , B and C expressions and you get your answers
7 0
3 years ago
Read 2 more answers
Other questions:
  • [2/SEC(¶/3)•[lim x→0 x^3+8x+10]^2]/[lim θ→0 sinθ/θ]
    6·1 answer
  • NEED HELP 15 POINTS!!!!1
    12·1 answer
  • Question #9*
    7·1 answer
  • How many inches is 100 meters
    7·2 answers
  • Please do any one of the word problems. Just tell me which one you did.
    14·1 answer
  • How do you say 1.75 in words
    10·2 answers
  • (1 point) The soot produced by a garbage incinerator spreads out in a circular pattern. The depth, H(r), in millimeters, of the
    8·1 answer
  • If the experiment is consisting of rolling a fair die once, find:
    14·1 answer
  • The venue is preparing for a fashion show in the auditorium. Blue carpet divides the large floor into two sections. The length o
    6·1 answer
  • Find the x- and y-intercepts for the following equation. Then use the intercepts to graph the equation.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!