Answer:
The multiples of a whole number are found by taking the product of any counting number and that whole number. For example, to find the multiples of 3, multiply 3 by 1, 3 by 2, 3 by 3, and so on. To find the multiples of 5, multiply 5 by 1, 5 by 2, 5 by 3, and so on.
Step-by-step explanation:
5 × 1 = 5
5 × 2 = 10
5 × 3 = 15
5 × 4 = 20
2 × 1 = 2
2 × 2 = 4
2 × 3 = 6
2 × 4 = 8
2 × 5 = 10 and so on
Answer:
30°
Step-by-step explanation:
Call the other end of the chord point B and the center of the circle point O. Then triangle AOB is an equilateral triangle, since OA = OB = AB.
Angle OAB is the internal angle of that triangle, so is 60°. Since OA is perpendicular to the tangent line (makes an angle of 90°), The angle between the tangent line and the chord must be ...
90° - 60° = 30°
___
The other way you know this is that central angle AOB is 60°, and the tangent-to-chord angle is half that, or 30°.
_____
One way to remember the angle relationship between a tangent line and a chord is this:
Consider a point C on long arc AB. The measure of inscribed angle ACB is half the measure of central angle AOB, no matter where C is on the circle. (If C happens to be on the short arc AB, then central angle AOB is a reflex angle, but the relationship still holds.) Consider what happens when C approaches A. The angle at vertex C is still the same: 1/2 the measure of central angle AOB. This remains true even in the limit when points A and C become coincident and line AC is a tangent at point A.
Answer: I think its either A or C
Step-by-step explanation: