We solve the inequality by subtracting 56.50 from both sides of the equation,
10.45b + 56.50 - 56.50 < 292.67 - 56.50
10.45b < 236.17
Then, divide both sides of the inequality by 10.45
b < 22.6
The solution suggests that the number of boxes than can be loaded on a truck without exceeding the weight limit of the truck should always be lesser than 22.6. Since we are talking about number of boxes, the maximum number of boxes that can be loaded should only be 22.
Answer:
Prime factorization: 825 = 3 × 5 × 5 × 11, which can be written 825 = 3 × 5² × 11.
Step-by-step explanation:
Hope this helps!
The Law of Cosines features the 3 side lengths of a triangle, plus the measure of the angle opposite one of those sides.
We want angle x, which is opposite the side of length 39.
Then: a^2 = b^2 - 2ab cos C becomes 39^2 = 36^2 + 59^2 - 2(36)(59)cos x
or 1521 = 3481 + 1296 - 2(36)(59) cos x
Subtract (3481+1296) from both sides: 1521 - 4777 = -4248cos x
-3256 = -4248cos x
-3256
Then: cosx = --------------- = 0.766
-4248
Solving for x: x = arccos -0.766 = 0.698 radian, or 40 degrees (answer)
Idk I’m sorryyy I’m having trouble tooo
Answer:
4.12
Step-by-step explanation: