2028/x=100/30
<span>(2028/x)*x=(100/30)*x </span>we multiply both sides of the equation by x
<span>2028=3.3333333333333*x </span>we divide both sides of the equation by (3.3333333333333) to get x
<span>2028/3.3333333333333=x </span>
<span>608.4=x </span>
<span>x=608.4
so there for its 608.4 hope this helps.</span>
The Karger's algorithm relates to graph theory where G=(V,E) is an undirected graph with |E| edges and |V| vertices. The objective is to find the minimum number of cuts in edges in order to separate G into two disjoint graphs. The algorithm is randomized and will, in some cases, give the minimum number of cuts. The more number of trials, the higher probability that the minimum number of cuts will be obtained.
The Karger's algorithm will succeed in finding the minimum cut if every edge contraction does not involve any of the edge set C of the minimum cut.
The probability of success, i.e. obtaining the minimum cut, can be shown to be ≥ 2/(n(n-1))=1/C(n,2), which roughly equals 2/n^2 given in the question.Given: EACH randomized trial using the Karger's algorithm has a success rate of P(success,1) ≥ 2/n^2.
This means that the probability of failure is P(F,1) ≤ (1-2/n^2) for each single trial.
We need to estimate the number of trials, t, such that the probability that all t trials fail is less than 1/n.
Using the multiplication rule in probability theory, this can be expressed as
P(F,t)= (1-2/n^2)^t < 1/n
We will use a tool derived from calculus that
Lim (1-1/x)^x as x->infinity = 1/e, and
(1-1/x)^x < 1/e for x finite.
Setting t=(1/2)n^2 trials, we have
P(F,n^2) = (1-2/n^2)^((1/2)n^2) < 1/e
Finally, if we set t=(1/2)n^2*log(n), [log(n) is log_e(n)]
P(F,(1/2)n^2*log(n))
= (P(F,(1/2)n^2))^log(n)
< (1/e)^log(n)
= 1/(e^log(n))
= 1/n
Therefore, the minimum number of trials, t, such that P(F,t)< 1/n is t=(1/2)(n^2)*log(n) [note: log(n) is natural log]
Answer:
7 4/5
5 1/2
17 13/55
Step-by-step explanation:
Tenemos que
R------------ > recorrido total
x---------------- > viaje en tren--------------- > (1/2)*R
y----------------- > viaje en bicicleta-------------(1/2)*(1/3)*R=(1/6)*R
z------------------- > viaje en automovil --------- > (1/2)*(2/3)*R=(2/6)*R=100 km
R=x+y+z
resolviendo nos queda que
(2/6)*R=100--------------- > R=100*6/2=300 km
viaje en tren----------- > (1/2)*R=300/2=150 km
viaje en bicicleta------- > (1/6)*R=300/6=50 km
( estos dos ultimos calculos no lo estan pidiendo y no hacen falta para contestar la pregunta, simplemente se realizan a manera didactica)
La respuesta es
La distancia entre las dos ciudades es de 300 km
Change 4 feet to inches
4 feet is 48 inches
48-10=38