First term is n=1
1(1-1)-4
1(0)-4
-4
first term is -4
2nd term
n=2
2(2-1)-4
2(1)-4
2-4
-2
2nd term is -2
3rd term
n=3
3(3-1)-4
3(2)-4
6-4
2
3rd term is 2
4th term
n=4
4(4-1)-4
4(3)-4
12-4
8
4th term is 8
the first 4 terms are -4, -2, 2, 8
Answer:
Step-by-step explanation:
We have f(x) and g(x). We are to evaluate each of these functions at the domain values given (1, 2, 3, 4, 5, and 6) and see where the output is the same.
and f(1) = 15
and f(2) = 16
and f(3) = 15
and f(4) = 12
and f(5) = 7
and f(6) = 0
Now for g(x) at each of these domain values:
g(1) = 1 + 2 and g(1) = 3
g(2) = 2 + 2 and g(2) = 4
g(3) = 3 + 2 and g(3) = 5
g(4) = 4 = 2 and g(4) = 6
g(5) = 5 + 2 and g(5) = 7
g(6) = 6 + 2 and g(6) = 8
It looks like the outputs are the same at f(5) and g(5). Actually, the domains are the same as well! f(5) = g(5)
Answer: The boundaries of 9 pounds are;
8.5 – 9.5 pounds
Step-by-step explanation: Method used to find the boundaries.
The boundaries of an indicated value are the upper and lower bounds of
the value, which are the possible minimum or maximum values the
number may be before being rounded to the current value.
The given boundaries is = 9 pounds
The lowest possible value, 9 pounds can be before rounding up is 8.5 pounds.
Therefore; 8.5 pounds is the lower bound of 9 pounds.
The highest possible value of 9 pounds is 9.44999... pounds which is approximately 9.5 pounds
Therefore; The upper bound of 9 pounds is 9.5 pounds
Which gives;
The boundaries of 9 pounds are;
8.5 – 9.5 pounds
Answer:
126
Step-by-step explanation:
The number of numbers divisible by 9 is ...
j = floor(500/9) = 55
The number of numbers divisible by 7 is ...
k = floor(500/7) = 71
Then the total (j+k) is ...
j +k = 55 +71 = 126