Answer:
Answered
Explanation:
The girl whirling the ball should let go off ball when the ball is at a position such that tangent to the circle is in the direction of the target.
the tangent at any point in a circular path indicates the direction of velocity at that point. And the moment when the centripetal force is removed the ball will follow the tangential path at that moment.
Answer:
She must stop the car before interception, distance traveled 12.66 m
Explanation:
We will take all units to the SI system
Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s
V2 = 70 Km / h = 19.44 m / s
We calculate the distance traveled before stopping
X = Vo t + ½ to t²
Time is what it takes traffic light to turn red is t = 2.0 s
X = 13.33 2 + 1.2 (-7) 2²
X = 12.66 m
It stops car before reaching the traffic light turning to red
Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle
V2 = Vo + a t2
a = (V2-Vo) / t2
a = (19.44-13.33) /6.6
a = 0.926 m / s2
This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)
X = Vo t + ½ to t²
X = 13.33 2 + ½ 0.926 2²
X = 28.58 m
Since the vehicle was 30 m away, the interception does not happen
<span>A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 115 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam.
1)What is the force the left support exerts on the beam?
2)What is the force the right support exerts on the beam?
3)How much extra mass could the gymnast hold before the beam begins to tip?
Now the gymnast (not holding any additional mass) walks directly above the right support.
4)What is the force the left support exerts on the beam?
5)What is the force the right support exerts on the beam?</span>
Answer:
b. The current stays the same.
Explanation:
In the case given current is supplied by the battery to a bulb . Here, we should know that bulb also apply resistance to the flow of current .
Now, when an identical bulb is connected in parallel to the original bulb .
Therefore, both the resistance( bulb) are in parallel.
We know, when two resistance are in parallel , current through them is same and voltage is divided between them.
Therefore, in this case current stays same in the original bulb.
Hence, this is the required solution.
Y₀ = initial position of the balloon at the top of the building = 44 m
Y = final position of the balloon at halfway down the building = 44/2 = 22 m
a = acceleration of the balloon = - 9.8 m/s²
v₀ = initial velocity of the balloon = 0 m/s
v = final velocity of the balloon = ?
using the kinematics equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 0² + 2 (- 9.8) (22 - 44)
v = 20.78 m/s