Answer:
We just add numerators and rewrite denominator.
Adding unlike dominators:
We need to find the same denominators. You need to find the least common multiple (LCM) of the two denominators.
Step-by-step explanation:
You mean unlike denominators and like denominators.
Adding like dominators: We just add numerators and rewrite denominator :
Example : 
Adding unlike dominators:
We need to find the same denominators. You need to find the least common multiple (LCM) of the two denominators.
For example :

LCM for 5 and 4 is 20 : Now, divide by 5 and multiply by 1 for first fraction. 20 divide by 4 and multiply by 3 :

( y - 4 ) ( y² + 4 y + 16 ) =
= y³ + 4 y² + 16 y - 4 y² - 16 y - 64 = y³ - 64
If the result is the polynomial of the form:
y³ + 4 y² + a y - 4 y² - a y - 64
a = 16
Answer:
it is D
Step-by-step explanation:
I know things dude. I got your back :-)
Given expression is
![\sqrt[4]{\frac{16x^{11}y^8}{81x^7y^6}}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B11%7Dy%5E8%7D%7B81x%5E7y%5E6%7D%7D)
Radical is fourth root
first we simplify the terms inside the radical


So the expression becomes
![\sqrt[4]{\frac{16x^4y^2}{81}}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E4y%5E2%7D%7B81%7D%7D)
Now we take fourth root
![\sqrt[4]{16} = 2](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D%20%3D%202)
![\sqrt[4]{81} = 3](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B81%7D%20%3D%203)
![\sqrt[4]{x^4} = x](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E4%7D%20%3D%20x)
We cannot simplify fourth root (y^2)
After simplification , expression becomes
![\frac{2x\sqrt[4]{y^2}}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5Csqrt%5B4%5D%7By%5E2%7D%7D%7B3%7D)
Answer is option B
All you have to do is multiply your number and then add them together !!