Step-by-step explanation:
The Taylor series expansion is:
Tₙ(x) = ∑ f⁽ⁿ⁾(a) (x − a)ⁿ / n!
f(x) = 1/x, a = 4, and n = 3.
First, find the derivatives.
f⁽⁰⁾(4) = 1/4
f⁽¹⁾(4) = -1/(4)² = -1/16
f⁽²⁾(4) = 2/(4)³ = 1/32
f⁽³⁾(4) = -6/(4)⁴ = -3/128
Therefore:
T₃(x) = 1/4 (x − 4)⁰ / 0! − 1/16 (x − 4)¹ / 1! + 1/32 (x − 4)² / 2! − 3/128 (x − 4)³ / 3!
T₃(x) = 1/4 − 1/16 (x − 4) + 1/64 (x − 4)² − 1/256 (x − 4)³
f(x) = 1/x has a vertical asymptote at x=0 and a horizontal asymptote at y=0. So we can eliminate the top left option. That leaves the other three options, where f(x) is the blue line.
Now we have to determine which green line is T₃(x). The simplest way is to notice that f(x) and T₃(x) intersect at x=4 (which makes sense, since T₃(x) is the Taylor series centered at x=4).
The bottom right graph is the only correct option.
Think of the 13-ft length of the ladder as the hypotenuse of a right triangle. Represent the horiz. distance from foot of ladder to base of tree by x, or 5 ft.
Represent the vert. dist. from base of tree to top of ladder by y, which is unknown.
Then (13 ft)^2 = (5 ft)^2 + y^2, or
169 ft^2 = 25 ft^2 + y^2. This simplifies to y^2 = 144. Thus y = + 12 feeet.
Note: Please pay attention to your spelling: "lader i up agenst a tree" should be "the top of a 13-ft ladder is placed against a tree."
Answer:
your answer should be 90
Step-by-step explanation:
Answer:
the most closest answer is D because the formula is 3.14 x radius² x height
Step-by-step explanation:
if its right can I have brainliest
We know that
the equation of the vertical parabola in the vertex form is
<span>y=a(x-h)²+k
</span>where
(h,k) is the vertex of the parabola
if a> 0 then
the parabola opens upwards
if a< 0
then the parabola open downwards
in this problem we have
f(x)=−5(x+7)²<span>+6
</span>a=-5
so
a< 0 -------> the parabola open downwards
the vertex is the point (-7,6) is a maximum
the answer is the option<span>
a = -5, opens down</span>
see the attached figure